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Voorwoord 

Het is 27 oktober 1972, de dag waarop ik ben geboren. Het is laagwater in de Maas, iets 
wat me op dat moment waarschijnlijk niets interesseert. Dat is meer dan twee decennia 
later, op 31 januari 1995, wel anders. Ik studeer inmiddels ‘iets met water’ en voor de 
tweede keer in drie jaar vinden er grote overstromingen van de Maas plaats. 
Tegelijkertijd begint algemeen het besef door te dringen dat klimaatveranderingen wel 
eens werkelijkheid zouden kunnen worden. Een eerste aanleiding van dit onderzoek is 
ontstaan. Niet veel later, het is februari 2002, ben ik dit voorwoord aan het schrijven. 
Een nieuwe hoogwatergolf is Itteren en Borgharen gepasseerd, gelukkig zonder al te 
veel schade aan te richten. Maar hoe zal het de volgende keer of over 50 jaar aflopen? 
Het benadrukt eens te meer de relevantie van water gerelateerd onderzoek. De 
afgelopen vier jaar heb ik getracht hieraan mijn steentje bij te dragen met als resultaat 
dit proefschrift. De steun en hulp van vele mensen is daarbij heel belangrijk geweest. 
Deze mensen wil ik hier bedanken. 

Als eerste wil ik mijn promotor en dagelijkse begeleider Kees Vreugdenhil van harte 
bedanken. Hij heeft mij de mogelijkheid geboden in alle vrijheid aan mijn onderzoek te 
werken en zijn ideeën omtrent ‘model appropriateness’, een belangrijke tweede 
aanleiding van dit onderzoek, vorm te geven. Keek ik in eerste instantie wat raar aan 
tegen vragen als ‘hoe goed moet het eigenlijk?’ en ‘is dit echt nodig?’, de laatste tijd stel 
ik deze vragen op mijn beurt steeds vaker aan anderen. Kees, nogmaals bedankt voor 
alle aangename discussies, kritische vragen en prettige samenwerking. 

Gedurende mijn onderzoek heb ik met verschillende mensen samengewerkt. Een aantal 
van hen wil ik hier speciaal bedanken. Met Paul Torfs van Wageningen Universiteit heb 
ik een aantal boeiende discussies gehad over hoofdstuk 3, dankzij het commentaar en de 
adviezen van Cor Schuurmans van de Universiteit Utrecht is hoofdstuk 4 aanzienlijk 
verbeterd en het afstudeerwerk van Koen van der Wal heeft een belangrijke bijdrage 
geleverd aan hoofdstuk 6. De samenwerking met Marcel de Wit, Mauk Burgdorffer en 
Hendrik Buiteveld van het RIZA, voor en tijdens Koen’s afstudeerproject, heb ik als 
zeer prettig ervaren. 

A lot of people are acknowledged for their help with the provision of data, models and 
other information. Luc Debontridder of the Belgian Meteorological Institute and 
Christophe Dehouck from Météo France provided the observed climate data for 
Belgium and France respectively. David Viner of the Climate Impacts LINK Project 
and George Boer of the Canadian Center for Climate Modelling and Analysis made the 
HadCM3/ HadRM2 and CGCM1 climate model data available. Ole Bøssing 
Christensen of the Danish Climate Center and Janice Bathols of CSIRO Atmospheric 
Research prepared and helped a lot with the HIRHAM4 and CSIRO9 climate model 
data respectively. Bob Jones of the European Soil Bureau and Malene Bruun of the 
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European Environmental Agency supplied me with the soil and land use data. Eric 
Sprokkereef of RIZA gave me essential Meuse basin data and Joop Gerretsen of 
Rijkswaterstaat Limburg made discharge data available. Finally, Sten Bergström of the 
Swedish Hydrological and Meteorological Institute kindly provided the HBV model. 

De woon-werk situatie heeft geresulteerd in aardig wat kilometers met de betrouwbare 
vierwieler N. Sunny. Alsof de auto wilde aangeven dat vier jaar onderzoek wel genoeg 
was geweest, begaf die het net voor het gereedkomen van dit boekwerk. Menigmaal 
vroegen collega’s verwonderd of ik nog steeds op en neer tufte tussen de Rijn en de 
Dinkel. Jazeker, en dat tuffen was de moeite waard. Ik heb een hele leuke tijd gehad met 
mijn collega’s en hoop dat nog even voort te zetten. Een aantal van hen wil ik speciaal 
noemen. Ik wil Anke bedanken voor de talloze hand- en spandiensten en lekkere koffie 
die altijd klaar stond. René, bedankt voor je hulp bij het bewerken en omzetten van 
allerhande databestanden met soms wel erg rare ‘formats’. Tenslotte wil ik mijn 
(voormalige) kamergenoten bedanken voor hun gezelschap. Jean-Luc, Chris en Caroline 
gedurende de eerste jaren en Michiel sinds een paar maanden. Een groot deel van de tijd 
deelde ik mijn kamer met één van mijn paranimfen. Frans, bedankt voor je prettige 
gezelschap, je gevoel voor humor en de goede discussies. 

Gelukkig was er de afgelopen jaren voldoende tijd voor andere dingen dan 
promotieonderzoek. Weekendjes weg, feesten en partijen dichtbij en ver weg, goede 
gesprekken in de Vlaam of een tripje naar Heeze of Delden. Beste (schoon)familie en 
vrienden, bedankt voor alle gezelligheid en plezier deze jaren en natuurlijk de interesse 
in mijn onderzoek. Ik hoop dat het door dit proefschrift duidelijker wordt, waar ik al die 
jaren mee bezig ben geweest. 

Dit promotieonderzoek wordt op 12 april 2002 afgesloten met de verdediging van het 
proefschrift. Wim van Leussen, Cor Schuurmans, Alfred Stein, Peter Troch en Herman 
Wind, bedankt voor het lezen van mijn proefschrift. Ik voel me vereerd dat jullie mijn 
opponenten zijn tijdens de verdediging. 

Elsbeth en Frans, bedankt dat jullie mijn paranimfen willen zijn en mij willen helpen en 
steunen voorafgaand en tijdens de verdediging. 

Mijn laatste dank gaat uit naar twee personen. Mamma, bedankt voor alle steun en 
vertrouwen, niet alleen tijdens dit promotietraject, maar ook gedurende heel mijn leven 
daarvoor. Lieve Simone, ondanks dat je zelf zegt dat je niet zo veel hebt bijgedragen 
aan dit boekwerk, denk ik toch dat je heel belangrijk bent geweest. Als steun en 
toeverlaat, reisgenoot en beste maatje. Dank je wel hiervoor. 

 Martijn Booij 

 Wageningen, februari 2002 
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Chapter 1  

Introduction 

1.1 General introduction 

1.1.1 Climate change and hydrology 
Global climate change induced by increases in greenhouse gas concentrations is likely 
to increase temperatures, change precipitation patterns and probably raise the frequency 
of extreme events (IPCC, 1996; 2001). This phenomenon is recognised by the scientific 
community and is beginning to penetrate into society and governmental bodies, who are 
presently negotiating about greenhouse gas emission reduction (e.g. in The Hague in 
2001). Climate change may have serious impacts on society, for example on coastal 
areas through sea level rise (Warrick et al., 1993), on agricultural areas because of shifts 
in growing seasons and changes in water availability (Mearns et al., 1997) and in river 
deltas because of both sea level rise and an increased occurrence of flooding events 
(Jacobs et al., 2000). 

The impact on the hydrological cycle may be considerable, influencing phenomena such 
as river flooding, drought and low flows. Subsequently, these changes can have an 
effect on all kinds of functions in a river basin. Low flows may have serious impacts on 
navigation, ecosystem behaviour and water quality, droughts will influence agriculture 
and drinking water availability and flooding events may cause enormous economical, 
social and environmental damage and even loss of human lives. For example the 1997 
Oder flood causes the loss of 54 lives and an economical damage of 2-4 billion dollar 
(Kundzewicz et al., 1997) and even worse the 1998 Yangtze flood killed 4,000-10,000 
people and resulted in gigantic economical damage (Zong and Chen, 2000). In the 
Netherlands, the 1993 and 1995 floods in Rhine and Meuse caused hundreds of millions 
Dutch guilders of economical damage and forced the evacuation of 200,000 people 
(Wind et al., 1999). Projected changes in climate may only increase the occurrence of 
these severe floods. This necessitates the application of robust and accurate flood 
estimation procedures to provide a strong basis for investments in flood protection 
measures with climate change. 

River flood protection measures in Dutch society include dikes, polders and deepening 
of flood plains. They are designed to prevent flooding associated with a so-called design 
discharge. The design discharge is the discharge with a probability of occurrence once 
in a very long period. The design criterion for dikes alongside the non-tidal part of the 
Rhine branches and Meuse in the Netherlands is 1/1250 per year. This criterion was set 
in 1977 after an extensive economical analysis on possible damage due to floods on the 
one hand and construction costs on the other hand (Commissie Rivierdijken, 1977). The 
criterion was not adjusted after a similar analysis in 1993 which showed that the 
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situation in the Netherlands had not changed since 1977 (Commissie Boertien I, 1993). 
The design criterion is subject for discussion and a technical committee is currently 
developing a new safety approach with three criteria for deliberation: an individual risk 
criterion, a societal risk criterion and an economical cost-benefit analysis (TAW, 2000). 
The current design criterion of 1/1250 per year will be assumed throughout this thesis. 

The design discharge associated with the design criterion can be determined in a purely 
statistical way or in a more physically based way. Statistical flood frequency analysis 
involves fitting of an extreme value probability distribution to a series of observed peak 
discharges. The resulting probability distribution relates exceedance probabilities 
(return periods) and peak discharges and thus the design discharge can be determined 
(e.g. Vogel et al., 1997; Gerretsen, 2001). Physically-based flood frequency analysis 
incorporates meteorological and hydrological information. This means that a 
meteorological model generates weather and its probability of occurrence, and a river 
basin model uses this as input to simulate peak discharges and their probability of 
occurrence. This approach can be carried out with analytical methods (e.g. Goel et al., 
2000) or with Monte Carlo simulation (e.g. Sivapalan et al., 1990). The first method 
uses simple, analytically solvable equations, for example intensity-duration-frequency 
(IDF) curves (Blöschl and Sivapalan, 1997; Koutsoyiannis et al., 1998) in the 
meteorological part and derived flood frequency distributions in the hydrological part 
(Kurothe et al., 1997; Goel et al., 2000). The second method involves the generation of 
synthetic meteorological time series (Moon et al., 1994; Wilks, 1998) as input to a 
rainfall-runoff model (Abrahart et al., 1996; Lamb, 1999) to derive discharge series. An 
extreme value distribution function can then be fitted to the peak discharges as in the 
statistical approach. 

Flood estimation incorporating climate change can not be done with the purely 
statistical approach. This is because extreme value distributions may change in future 
and thus distributions fitted to observed peak discharges can not be used anymore. 
Therefore, one of the physically-based approaches should be used. Diermanse (2001) 
has identified two drawbacks when applying analytical methods, namely that the spatial 
heterogeneity of inputs and processes is not incorporated, and secondly that the 
interaction of different flood generating mechanisms is not contained in these methods. 
One of the reasons is that equations can not be too complex, because they should be 
solved analytically. The Monte Carlo approach does not have this requirement and can 
be used here. Moreover, with the latter approach an uncertainty assessment can be done 
to evaluate the validity of the estimated floods with climate change. The impact of 
climate change on river flooding is further discussed in section 1.3. 

1.1.2 Model complexity 
To use the physically-based flood frequency analysis, a selection of a meteorological 
model (i.e. a rainfall model) and river basin model should be made. A broad palette of 
models is available ranging from simple, lumped black-box models to complex, 
distributed models including lots of physics and mathematics. Meteorological output 
with climate change include direct output from General Circulation Models (GCMs) 
(e.g. Boer et al., 2000a; 2000b; Gordon et al., 2000), dynamically downscaled output 
(e.g. Jones et al., 1995; Christensen et al., 1996) and empirically downscaled output 
(e.g. Bardossy, 1997; Wilby and Wigley, 2000). River basin models encompass 
empirical models (e.g. unit hydrograph method; Sherman, 1932), conceptual models 
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(e.g. Stanford watershed model; Crawford and Linsley, 1966) and physically-based 
models (e.g. Système Hydrologique Européen; Abbot et al., 1986). These divisions are 
somewhat arbitrary and hybrid forms exist in which for example dynamical and 
empirical downscaling methods are combined. The complexity of models does not only 
depend on the model class to which they belong, but also on the processes incorporated, 
the process formulations used and the different space and time scales employed. More 
complex models have larger data requirements and computational costs, and, although it 
can not be guaranteed, uncertainties in model outcomes and associated costs will 
generally be less. It would seem that an optimum model complexity associated with 
minimum total costs or total uncertainty exists. This raises the question what such an 
appropriate model should look like given the specific modelling objective and research 
area. More specifically, which physical processes and data should be incorporated and 
which mathematical process formulations should be used and at which spatial and 
temporal scale, to obtain an appropriate model level? This issue of model 
appropriateness is further considered in section 1.2. 

1.2 Model appropriateness 
Different approaches with respect to model appropriateness have been suggested. They 
can be classified according to the specific part of the model which is evaluated, such as 
output, processes, formulations, scales or models as a whole. 

Evaluation with respect to the output implies using one of the common criteria for 
model evaluation, e.g. the coefficient of efficiency (Nash and Sutcliffe, 1970), 
coefficient of determination (square of the Pearson’s product-moment correlation 
coefficient) or index of agreement (Wilmott, 1981) and comparing it with a predefined 
threshold. Legates and McCabe (1999) compared these goodness-of-fit measures and 
concluded that correlation based measures should not be used, because high correlations 
can be achieved by poor model simulations. Instead of the coefficient of efficiency, the 
index of agreement and additionally, the mean squared error or mean absolute error 
should be used. Weglarczyk (1998) investigated many goodness-of-fit criteria and 
pointed out that care should be taken in applying these measures because of their 
(frequent) interdependencies. Examples in climatological and hydrological literature are 
numerous and include single model validation (Boer et al., 2000a; Chiew and 
McMahon, 1994) and multiple model validation or model intercomparison (Kittel et al., 
1998; Yang et al., 2000). This kind of evaluation is used as a kind of uncertainty 
analysis as well. It only assesses model appropriateness for a specific situation (time 
period, region, climate) and thus no extrapolations to other situations can be made. 
Furthermore, only the output is concerned and consequently the model appropriateness 
in simulating internal processes can not be evaluated. 

Smith (1996) describes a qualitative procedure to incorporate additional processes or 
omit redundant ones dependent on e.g. the scale at which data are available and results 
are needed. Jakeman and Hornberger (1993) used time series techniques to determine 
how many parameters are appropriate to describe the rainfall-runoff relationship in the 
case that only rainfall, temperature and streamflow data are available. They found that 
after modulating the measured rainfall using a nonlinear loss function, the rainfall-
runoff response of a variety of catchments is well represented using a two-component 
linear model with four parameters. This is in agreement with other investigations on this 
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subject (e.g. Loague and Freeze, 1985; Beven, 1989). This suggests that runoff 
behaviour can be described by two processes; surface and sub-surface runoff. The latter 
process is often sub-divided into groundwater flow and subsurface storm flow, 
supported by the different inherent mechanisms and spatial and temporal scales (Blöschl 
and Sivapalan, 1995). Although this kind of analyses gives some indication on the 
processes to be incorporated in a model, it is rather qualitative and conclusions are 
strongly related to the problem, region and space and time scales considered. The 
determination of dominant processes will be further discussed in chapter 4 and 5. 

Process formulation appropriateness is again related to the problem, region and space 
and time scales considered. Numerous studies have been conducted to identify the 
appropriate formulation for a specific process. For example, comparative studies with 
respect to flood routing methods (Todini, 1991; Moussa and Bocquillon, 1996a) and 
evapotranspiration estimations (Kite and Droogers, 2000) have been performed. This 
will be considered in more detail in chapter 5. 

The issue of appropriate spatial and temporal scales has received wide attention. Bear 
(1972) introduced the concept of the Representative Elementary Volume (REV) in fluid 
dynamics as the order of magnitude where the porosity varies only smoothly with 
changing volume. In analogy, Wood et al. (1988) introduced the term Representative 
Elementary Area (REA) in catchment hydrology as an appropriate scale at which a 
simple description of the rainfall-runoff process could be obtained. They give as one of 
the definitions of the REA ‘the smallest discernable point which is representative of the 
continuum’ and arrived at an area of approximately 1 km2 analysing a catchment of 17 
km2 using TOPMODEL (Beven and Kirkby, 1979). These studies determined 
appropriate model scales using simulations with a specific model. A second approach is 
to determine the appropriate model scale without simulation with a specific model. An 
example is the use of hydrological response units (HRU). An HRU is an area which is 
considered to be homogeneous for modelling purposes. Areas with similar land use and 
physical characteristics are grouped into HRUs. They are assumed to exhibit a similar 
relationship between model inputs and outputs and can consequently be modelled with 
the same set of parameters (e.g. Kite and Kouwen, 1992). A third approach is to assess 
the appropriate scale of a separate variable without simulation. One way is the use of 
fractals and scaling, examples are studies considering the fractal nature of rainfall 
(Lovejoy and Schertzer, 1985), catchment topography (Nikora, 1994) and channel 
networks (Moussa and Bocquillon, 1996b). Another way is the application of similarity 
and dimensional analysis dealing with scales (e.g. Sivapalan et al., 1990). A third way is 
the use of relations between scales and statistical quantities. Western and Blöschl (1999) 
used such relations to determine thresholds for scales to be employed when analysing 
statistics accepting a specific bias. This latter approach will be extensively described in 
section 2.3. 

The above mentioned approaches consider some specific part(s) of the appropriateness 
problem. There is a need for an integrated approach to determine an appropriate model 
for a specific modelling objective and research area. Moreover, one would preferably 
determine the dominant processes, appropriate formulations and scales before model 
construction and application. Chapter 2 will pay attention to this issue. 
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1.3 Climate change and river flooding in the Meuse basin 

1.3.1 Global and regional climate change 
As a result of human activities, atmospheric concentrations of some of the natural 
greenhouse gases are increasing, and entirely new man-made greenhouse gases have 
been introduced into the atmosphere as well. In this respect, most important natural 
greenhouse gases are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). 
New man-made greenhouse gases are chlorofluorcarbons (CFCs) or halocarbons. The 
pre-industrial atmospheric concentration (1750-1800), current atmospheric 
concentration (1998) and current rate of annual atmospheric accumulation are for CO2 
278 parts per million by volume (ppmv), 365 ppmv and 1.5 ppmv/yr (0.4 %) (IPCC, 
2001). This increase in the atmospheric greenhouse effect will change the radiative 
balance of the earth and is likely to increase temperatures, change precipitation patterns 
and probably raise frequencies of extreme events (IPCC, 1996; 2001). 

Fully coupled Atmosphere-Ocean General Circulation Models (AOGCMs) 
incorporating land- and sea-ice dynamics and land-surface processes are used to 
simulate current climate and predict future climate. For these predictions, scenarios for 
future greenhouse gas and aerosol concentrations are used (e.g. Carter et al., 1999). 
Atmospheric GCMs currently have a typical horizontal resolution of around 300 km and 
have 10-20 vertical levels (Hartmann, 1994). At these resolutions, treatment of local 
climatic forcings which are important at the catchment scale (10-100 km) are not 
captured (Giorgi, 1995). A first approach to include these local forcings is the use of a 
global GCM with variable resolution (e.g. Déqué and Piedelievre, 1995), which gave 
promising results. A second approach is the application of statistical relationships to 
downscale large-scale GCM variables to local surface variables. This includes factor 
methods (where the observed series are multiplied with a factor; Gellens and Roulin, 
1998), regression methods (Wilby and Wigley, 2000), classification methods (Bardossy 
and Plate, 1992), re-sampling methods (Wojcik et al., 2000) and conditional methods 
(e.g. weather generators, stochastic rainfall models; Jothityangkoon et al., 2000). A 
third approach is the utilisation of a high-resolution regional climate model (RCM) 
nested inside the global GCM. The initial and boundary conditions necessary to drive 
the RCM are provided by the output of GCM global simulations. With this technique, 
horizontal resolutions of 20 km (Marinucci et al., 1995) to about 50 km (Jones et al., 
1995; Christensen et al., 1996) up to 70 km (Marinucci and Giorgi, 1992) are achieved. 
In applying one-way nested models to regional climates, there is an assumption that the 
development of systems within the model domain is constrained by the forcing of the 
GCM boundary conditions. As with the statistical techniques, the reliability of the 
GCMs therefore largely determines the value of the downscaling techniques. 
Comparisons between different downscaling techniques do not agree about which 
method to chose (e.g. Wilby and Wigley, 1997; Kidson and Thompson, 1998; Murphy, 
1999). While in future direct use of dynamical downscaled climate variables in 
hydrological models may be possible, for practical reasons statistical methods are 
necessary (Beersma et al., 2000). 

Simulations obtained with climate models generally are in reasonable agreement with 
observations of the present climate for a variety of key dynamic and thermodynamic 
climate variables. However, this does not mean that climate models are capable of 
accurately predicting the response of the climate to a natural or anthropogenic 
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perturbation. This is because a large number of adjustable constants is introduced in the 
parameterisations for the sub-grid-scale phenomena and processes. These constants 
often can not be determined on the basis of fundamental principles, but rather are set to 
values that give the most realistic-looking simulation of climate. More confidence in 
predictability of climate models can be gained by testing the models in great detail and 
their components separately, and by testing their response to prescribed forcings for 
which the response is known such as the diurnal and annual cycles of solar heating, or 
boundary conditions of earlier times (e.g. Renssen et al., 1996; Ganopolski et al., 1998). 
In model validation, key climate variables are the surface air temperature and 
precipitation. Model validation should be quantitative and has to deal with means, 
variances and extremes. Deficiencies of concern common to many models are the ‘cold 
bias’ of several degrees in the tropical troposphere, the underestimation of the intensity 
of weather systems, the poor simulation of clouds and the smoothing of the topography 
(McGregor et al., 1993). When comparing different models, agreement is necessary on 
the method of diagnosis, the forcing conditions (solar heating, composition 
atmosphere), the data set for verification (length, period) and the horizontal resolution 
(Schuurmans, pers. comm.). Important uncertainties of estimates of climate change are 
the response of cloud radiative properties, the changes in ice and snow cover, the 
oceanic response, the shifts in regional climate patterns and the changes in variability 
(Dickinson, 1989; Mearns et al., 1997). 

Several model intercomparisons have been performed for the simulation of the present 
climate (model validation) and the future climate (climate prediction) (e.g. Gates, 1999; 
IPCC, 1996; Räisänen, 1997; Kacholia and Reck, 1997; Kittel et al., 1998 Meehl, 
2000). They found global mean temperature and precipitation biases of respectively 1.1 
°C and around 10 % and a good simulation of large-scale features. Validation over 
Europe with individual models (Marinucci and Giorgi, 1992 (RCM); Marinucci et al., 
1995 (RCM), Jones et al., 1995 (RCM); Gregory and Mitchell, 1995 (GCM)) resulted in 
approximately equal performances; temperature differences of 1-4 °C and precipitation 
within 50 % of observed values. Christensen et al. (1997) found for seven RCMs for 
Europe positive and negative biases for temperature (2-4 °C) and mainly positive ones 
for precipitation (1-5 mm/day). 

The models agree on large-scale features of climate change, but their agreement on 
smaller scales is substantially worse. The majority of the GCMs predicts a change in 
global mean temperature and precipitation of respectively +1 to +4.5 °C and –35 to 
+120 % in 2100 (large regional differences) (IPCC, 1996; Kittel et al, 1998). Individual 
GCM-studies indicate for Europe an average temperature increase of respectively 3.5, 6 
and 4.4 °C with CO2 doubling (Giorgi et al., 1992; Gregory and Mitchell, 1995; Jones et 
al., 1997). Three RCMs produce for Europe an average temperature increase of 
respectively 3.6, 2.8 and 4.0 °C (Giorgi et al., 1992; Rotach et al., 1997; Jones et al., 
1997). Precipitation predictions vary from model to model. Many models suggest an 
increase of rainfall intensity and frequency of extreme events and a decrease of 
moderate rainfall with climate change (e.g. for Europe: Gregory and Mitchell, 1995; 
Cubasch et al., 1995). Katz and Brown (1994) indicate that extreme events are relatively 
more sensitive to changes in climate variability than to changes in climate means. 
However, the emphasis has been placed on analysing changes in the latter statistic. 
Some attention has been given to the variability and negligible attention to extremes. 
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1.3.2 Impact on hydrology and river flooding 
The climate variables downscaled to ‘hydrological’ scales are used as input in 
hydrological models (empirical, conceptual or physically-based) to assess the impact of 
climate change on the hydrology of a catchment. The earliest studies (e.g. Nemec and 
Schaake, 1982) used hypothetical climate change scenarios (factor methods) in 
combination with statistical relations or hydrological models to assess these impacts. In 
the mid 80s and beginning of the 90s, results from GCMs became available as direct or 
indirect input in hydrological models. For example Gleick (1987) used several 
hypothetical and GCM climate change scenarios together with the hydrological 
Sacramento model for climate impact assessment in California. He found major 
decreases in summer runoffs and increases in winter runoffs for all eighteen climate 
scenarios. Similar approaches for Europe (Belgium, Switzerland, Greece) resulted in 
similar conclusions with respect to high and low flows (Bultot et al., 1988; 1992; 
Mimikou et al., 1991). From then on, also other approaches (stochastic rainfall models, 
synoptic scale hydrological models) were used for climate impact assessment (e.g. 
Wilby et al., 1994; Blazkova and Beven, 1997). An alternative approach is to use 
paleoclimatic and paleoflood data to analyse climate impacts. Results from this 
approach suggest that even modest climatic changes (temperature 1-2 °C and 
precipitation 10-20 %) can result in very important changes in the magnitudes and 
recurrence frequencies of floods (Knox, 1993; Knox and Kundzewicz, 1997). However, 
the majority of the studies uses factor-like methods for climate change scenarios and 
conceptual hydrological models to mainly assess changes in average variables. 

In the 90s studies for the Rhine basin (Kwadijk, 1993) and the Meuse basin 
(Middelkoop and Parmet, 1998) were carried out. For these basins an increase of peak 
discharges of 15-20 % by the end of the 21st century was found, using the factor 
method for climate scenario construction and GIS-based hydrological models with a 
time step of 10 days. The peak discharges were obtained employing two different 
methods for downscaling 10-day discharges to daily discharges. Gellens and Roulin 
(1998) used seven climate scenarios in combination with the factor method and the 
daily conceptual model IRMB to assess the impact of climate change on streamflow for 
eight small catchments in Belgium (four in the Meuse basin). They found for all but one 
scenario a rise in the frequency of floods in winter for the catchments where surface 
flow prevails. Wit et al. (2001) studied the impact of climate change on low flows in the 
Meuse basin and selected sub-catchments with two climate scenarios and three different 
hydrological models. They found an increase of the average monthly discharge in spring 
and a decrease of the average monthly discharge in autumn. Only small changes in 
maximum monthly average discharges (winter) were found. Overall, it seems that 
climate change will result in an increase of flood frequencies for the Meuse basin. 
However, this issue is only roughly considered in previous studies. No attempt has been 
made to simulate discharge behaviour on a daily basis using spatially and temporally 
changed climate patterns. 

In a review, Leavesley (1994) pointed out some major problems in the modelling of the 
effects of climate change on water resources. These included the measurement and 
estimation of parameters over a wide range of scales and the quantification of 
uncertainty in model parameters and results. The mismatch between different scales 
(from hill slope to GCM grid scale, from storm duration to climate change scale), the 
uncertainty assessment and additionally the response of extreme values still are major 
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problems in hydrological impact assessment (Beersma et al., 2000). These issues are 
briefly considered below. 

Gleick (1986) pointed out the problem of the mismatch of scales when using coarse 
scale GCM projections for impact assessment at the catchment scale. Sub-grid scale 
hydrological processes are not resolved by the coarse scale GCMs and must therefore be 
parameterised in the GCMs. Moreover, these GCMs deliver climate variables at such a 
scale that, in particular for precipitation, too little variability is introduced in the 
hydrological system and as a result the discharge regime is less variable than the 
observed one. Because of this, methodologies are used to downscale variables at the 
GCM-scale to the scale required for impact studies. These downscaling methodologies 
have been briefly reviewed in section 1.3.1. An alternative approach is to employ GCM-
data together with macroscale hydrological models (105-106 km2). For example Kite and 
Haberlandt (1999) used the conceptual SLURP model to simulate the hydrological 
response to GCM and other coarse scale atmospheric data for two large basins in North 
America. They found that the agreement between observed and modelled discharge 
became better with increasing drainage area. This emphasises that the applicability of 
this kind of method is restricted to very large basins where only the discharge at the 
outlet is of interest. Other macroscale models simulate streamflow for basins in a whole 
continent (Arnell, 1999) or even in the whole world (Arora and Boer, 2001). These 
models often are strongly related to the hydrological parameterisations within GCMs or 
are equal to these parameterisations. Ideally, GCMs are used to describe the 
hydrological response to climate change directly. For the time being this can only be 
done for very large basins and average quantities, and even then model outcomes should 
be handled with care due to the crude hydrological parameterisations in GCMs. 

The problem of uncertainty associated with model outcomes is a phenomenon common 
to all scientific areas where approximations of reality by means of models are of 
interest. A whole cascade of uncertainties is present in hydrological impact assessment 
ranging from uncertainties about future greenhouse gas emissions and responses of the 
climate system to uncertainties in physical catchment characteristics and hydrological 
models. Numerous studies have assessed these different uncertainties (e.g. Uhlenbrook 
et al., 1999; Visser et al., 2000), but apparently no serious attempts have been made to 
evaluate the whole uncertainty cascade associated with the impact of climate change on 
river flooding. Given the complexity of especially GCMs this seems to be very difficult 
if not impossible to do, but at least some range of possible outcomes should accompany 
a climate impact study (e.g. Carter et al., 1999). This range can then be compared with 
changes in hydrological variables to evaluate the reliability of these changes. Such an 
evaluation probably reveals that uncertainties are equal to or larger than predicted 
changes and nothing can be concluded at all. However, at least some confidence can be 
placed upon the direction of change and the range of possible changes provided that no 
‘surprises’ such as the collapse of the thermohaline circulation in the North Atlantic 
(Ganopolski et al., 1998) or the disintegration of the West Antartic Ice Sheet 
(Oppenheimer, 1998) will occur. 

Hydrological responses of particular interest are extremes like low flows and floods. 
Floods are of interest in this thesis and their practical relevance has been illustrated in 
section 1.1. Despite this practical relevance, applications of statistical extreme value 
theory to climate and climate impact analysis are rare given the vast amount of literature 
on climate change in general (Katz, 1999). This deficiency is difficult to explain taking 
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into account the frequent applications found in engineering design issues and its 
practical relevance. An explanation may be that the spatial and temporal resolutions 
should be sufficiently fine on the one hand and the temporal domain should be 
sufficiently long on the other hand to obtain reliable estimates of extreme responses. 
This combined with the complexity of GCMs and the variable responses within river 
basins can make assessments (seemingly) infeasible. Another explanation may be the 
belief that GCMs are incapable to provide meaningful information about changes in 
extremes at appropriate spatial and temporal scales (Beersma et al., 2000). This belief 
may act as a barrier to an exploration of the potential of GCMs to provide useful 
information. However, for example daily data and multiple GCM simulations can partly 
solve this problem. It must be mentioned that the other responses (low and average 
flows) should not be forgotten when focusing on a particular response (high flows), 
because the general hydrological behaviour ought to be realistic as well. 

1.3.3 Meuse river basin 
The implications of climate change for the important Dutch rivers has already been 
highlighted in the preceding sections. The Meuse basin has been chosen as research 
area, because less climate impact studies have been performed than e.g. for the Rhine 
basin (e.g. Kwadijk, 1993; Grabs, 1997; Middelkoop et al., 2001). Moreover the Water 
Resources Group of the University of Twente has some experience in other, related 
research fields in the Meuse area (e.g. Wind et al., 1999; Gerretsen, 2001). A brief 
description of the Meuse basin will be given here. 

The Meuse is a river with a length of about 900 km from the source in France to the 
North Sea. Its basin covers an area of approximately 33,000 km2 including parts of 
France, Luxembourg, Belgium, Germany and the Netherlands (see Figure 1.1). The 
main tributaries of the Meuse are the Chiers, Semois, Lesse, Sambre, Ourthe, Amblève, 
Vesdre and Rur. The Meuse basin can be subdivided into three major geological zones: 
the Lotharingian Meuse, the Ardennes Meuse and the Dutch Meuse. The Lotharingian 
Meuse goes from the source to the mouth of the Chiers and mainly transects 
sedimentary Mesozoic rocks. Its catchment is lengthy and narrow, the gradient is small 
and the major bed is wide. The discharge regime is therefore relatively flat. The 
Ardennes Meuse is situated between the mouth of the Chiers and the Dutch border and 
transects Paleozoic rock of the Ardennes Massif. This gives a narrow river valley and a 
big slope. Together with the poor permeability, this results in a quick response to 
precipitation. The Dutch section of the Meuse goes through the Dutch and Flemish 
lowlands consisting of Cenozoic unconsolidated sedimentary rocks. This section is 
sometimes split up into a relatively steep stretch from the border to Maasbracht and a 
flat stretch from Maasbracht to the mouth (Berger, 1992). 
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Figure 1.1 The Meuse river basin (Berger, 1992). 
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Precipitation is evenly distributed throughout the year. Low discharges mainly coincide 
with the peak of evapotranspiration during summer months and high discharges mostly 
occur during the winter months when evaporation is small. In Figure 1.2 the discharge 
regime of the Meuse is compared with the discharge regime of other rain-fed rivers of 
comparable size located in Northwest Europe. The figure shows that the discharge 
regime of the Meuse is more variable than the regime of other rivers. This implies that 
the Meuse has a relatively fast response to precipitation and is therefore sensitive to 
floods and droughts and changes in these properties due to climate change. The floods 
in 1993 and 1995 were the second and third largest observed peak discharges in the 20th 
century after the flood of 1926. Figure 1.3 gives the observed annual peak discharges at 
Borgharen for 1911-2000 and does not show a clear trend. When looking in more detail, 
a slightly increasing, but not significant trend can be observed. No attempt has been 
made to relate increases in greenhouse gas concentrations observed in the 20th century 
and accompanying temperature increases to this slightly increasing annual peak 
discharge series. 
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Figure 1.2 Normalised monthly discharge regimes for some Northwest European rivers (Wit et al., 

2001). 

The Meuse is used for a variety of functions including domestic, industrial and 
agricultural water supply, navigation, ecological functioning and recreation. During 
periods of low or high flows these functions can conflict with each other. Downstream 
of Liège there are a number of canals fed by water of the Meuse, the most important are 
the Albertkanaal, Zuid Willemsvaart and Julianakanaal. These canals are used for 
navigation and water supply. Reservoirs can be found in the upper branches of some 
tributaries and are used for electricity production, drinking water supply and flow 
regulation. These reservoirs are too small to have a major effect on the discharge regime 
of the Meuse, except for the Rur reservoir (Berger, 1992). 
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Figure 1.3 Annual peak discharges measured at Borgharen for 1911-2000 (bars), 10-year moving 

average (continuous line) and linear regression (straight line). 

1.4 Research objectives and approach 

1.4.1 Research objectives and questions 
Two important research topics have been raised in the preceding sub-sections, namely 
the issue of appropriate models and the effect of climate change on river flooding. The 
corresponding research objectives are the following: 

I. What is the appropriate model complexity for a specific modelling objective and 
research area? 

II. What is the impact of climate change on river flooding in the Meuse? 

Research objective I can be roughly subdivided into three research questions: 
1. Which processes are dominant with respect to the research objective and area, 

and which variables are related to these processes? 
2. Which spatial and temporal scales should be used to describe these processes 

and variables appropriately? 
3. Which mathematical process formulations are appropriate for the description of 

the dominant processes at appropriate scales? 
The answers to these questions will result in appropriate model components, which can 
be implemented into an existing modelling framework to obtain an appropriate model or 
can be used to build a new appropriate model. 

Research objective II can be split up in two research questions: 
4. How does climate change look like in terms of changes in precipitation and 

temperature? 
5. What is the impact of this climate change on river flooding in the Meuse basin? 
The second question can be dealt with by using the appropriate model from research 
objective I. 
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1.4.2 Research approach 
The five mentioned research questions are considered in this thesis. Research questions 
1, 2 and 3 are dealt with in chapter 2, 3, 4 and 5 and constitutes the main part of this 
research. Research questions 4 and 5 are mainly treated in chapter 6. An outline of the 
research questions and the related chapters is given in Figure 1.4 and described below. 

In chapter 2, a preliminary model appropriateness procedure is set up and applied to 
investigate the possibilities of such a procedure and to identify the limitations and 
drawbacks. These latter disadvantages serve as a guide for the development of the final 
model appropriateness procedure. Uncertainty and scale aspects related to this 
procedure are described more extensively in the remainder of this chapter. In chapter 3, 
the effect of different spatial and temporal input and model scales on extreme river 
discharges is considered to further explore the issue of scales. This has been done by 
employing a stochastic rainfall model and a dimensionless river basin model with 
varying scales. In chapter 4, climate data from several sources are compared to assess 
the appropriate scales for the key climatic input variables. Moreover, this analysis 
reveals climate data under current and changed conditions to be used in the impact 
assessment in chapter 6. In chapter 5, river basin data from several sources are 
compared and literature is reviewed to derive the dominant processes, appropriate scales 
and appropriate process formulations to be used in the appropriate river basin model. 
Additionally, this analysis results in river basin data to be adopted in chapter 6. In 
chapter 6, the impact of climate change on river flooding is assessed by employing 
another stochastic rainfall model and the appropriate river basin model. This appropriate 
model has been obtained by implementing the appropriate model components derived in 
the preceding chapters into an existing modelling framework. Moreover, two additional 
models of differing complexities are used to check the sensitivity of the results to model 
complexity and to verify the model appropriate procedure. Finally in chapter 7, the 
answers to the research questions are formulated and the results from the preceding five 
chapters are collectively discussed. 

R1. Processes
and variables

6. Impact of climate change on river
flooding

R2. Spatial and
temporal scales

R3. Process
formulations

R4. Climate
change

R5. Impacts on
river flooding

2. Preliminary framework
Model appropriateness framework

5. River basin analysis

4. Climate data analysis

3. Preliminary
scale analysis

 
Figure 1.4 Research questions 1, 2, 3, 4 and 5 (R1-R5) and related chapters (2-6). Dashed boxes 

indicate that chapters aid in answering the research questions (e.g. by providing data). 
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Chapter 2  

Model appropriateness framework 

2.1 Preliminary approach 

2.1.1 Introduction 
Many studies consider one specific part of the appropriateness problem, e.g. the 
determination of the relevant processes for a problem or the assessment of appropriate 
spatial resolutions. As stated in chapter 1, there is a need for a more integrated approach 
to determine an appropriate model for a specific modelling objective and research area. 

In this section a first step is taken by developing and applying a preliminary framework 
for the analysis and improvement of model appropriateness. The framework has been 
applied to a river basin model meant to assess the impact of climate change on flooding 
in the Meuse. This is to illustrate the above-mentioned approach, rather than to obtain 
an appropriate model for the specific modelling objective. The objective is achieved by 
developing a stochastic rainfall model for rainfall generation and using a simple, water 
balance based river basin model as a ‘starting model’ in the appropriateness framework. 
The rainfall model is developed, because under climate change conditions only rainfall 
on a coarse grid is available and thus climate change statistics should be used in a 
stochastic model. The river basin model outputs of particular interest are the extreme 
discharges, here extrapolated to the design discharge. The direction of model 
appropriateness improvement is determined by a cost function dependent on model 
output uncertainty. This model output uncertainty is assessed by means of sensitivity 
and uncertainty analysis with respect to the main inputs, parameters and process 
descriptions. Finally, the point of minimum costs should be approached to a certain 
extent sufficient for the user or it is found that this point will not be reached at all. This 
final stage is not the main objective and is beyond the scope of this section. 

In 2.1.2 an outline of the procedure for the analysis and improvement of model 
appropriateness is given. In 2.1.3 the stochastic rainfall model is described and the river 
basin model is briefly considered, the latter model is extensively described in chapter 3. 
Results are discussed in 2.1.4 and an introduction to the final framework is given in 
2.1.5. This final framework is partly considered in section 2.2, dealing with model 
uncertainty analysis, and in section 2.3, discussing statistical and scale issues. 
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2.1.2 Model appropriateness procedure 

Analysis of model appropriateness 
A cost function dependent on model output uncertainty is assumed. This cost function 
consists of two components, the model costs necessary to obtain a specific uncertainty 
level for the input, parameters or model (e.g. model development, data exploration) and 
the expected construction costs as a result of the output uncertainty (in water 
management e.g. damage, constructions). A model is assumed to be appropriate for a 
specific research objective when the output uncertainty results in minimal total costs. 
This is illustrated in Figure 2.1 for a situation with relatively small model costs and a 
situation with large model costs. The construction costs are generally much larger than 
the model costs and there is a lower limit with respect to the output uncertainty that can 
be obtained. The model cost function is assumed to be discontinuous due to new model 
technologies. These technologies require large investments with slight decreases in 
uncertainty on the short term, but possibly considerable decreases in uncertainty with 
small additional costs on the long term. The appropriate model complexity associated 
with minimal total costs depends largely on the relative magnitudes of the construction 
and model costs (compare a and b). The appropriateness criterion can be reduced to an 
uncertainty criterion when the costs functions are roughly known. Then, a model is 
assumed to be appropriate when its output uncertainty is less than a specified criterion 
G. 
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Figure 2.1 Costs as a function of output uncertainty for a situation with small model costs (a) and a 

situation with large model costs (b). 

It is assumed that the model to be used is approximately smooth and linear and the 
inputs are independent. Model output uncertainty is then expressed as (e.g. Morgan and 
Henrion, 1990) 
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where X = (x1, x2,……, xN) are the relevant inputs, parameters and processes in the 
model, X0 are the expected values of X and σX

2 = (σx1
2, σx2

2,….., σxN
2) are the variances 

of X. These variances are described by a spatio-temporal semivariogram. The spherical 
model proposed by Hoosbeek (1998) was used here 
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Here, h is the lag distance or model scale in space, k is the lag distance or model scale in 
time, c0 is the nugget variance or the microvariability at a scale smaller than the 
separation distance between the closest measurement points, c1 is the spatial variance 
contribution, c2 is the temporal variance contribution, LS is the spatial range and TS is 
the temporal range. All these parameters are dependent on input, parameter and process 
xi. An example of a spatio-temporal semivariogram showing σxi

2(h,k) for arbitrary c0, c1, 
c2, LS and TS is given in Figure 2.2. 
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Figure 2.2 Spatio-temporal semivariogram showing σxi

2(h,k) for arbitrary c0, c1, c2, LS and TS. 
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Improvement of model appropriateness 
Model output uncertainty usually will be much larger than G and consequently, 
reduction of uncertainties is required. This reduction can be obtained through a variety 
of techniques. The here applied procedure of model uncertainty reduction and 
accompanying model appropriateness increase will briefly be described. Starting-point 
is a simple river basin model, which transforms rainfall to runoff. The processes, 
accompanying parameters and inputs to be incorporated in the model are determined by 
comparing simulations from model versions including varying numbers of processes 
with observations through the model efficiency coefficient (Nash and Sutcliffe, 1970) 
and the discharge regime. These processes remain incorporated throughout the entire 
procedure, however process descriptions can be adapted as will be shown below. The 
squared sensitivities (∂y/∂xi)X0

2 for these relevant processes, parameters and inputs xi are 
determined by varying their values within a specific range and simulating the effect on 
the output Y. Then uncertainties σxi

2 according to equation (2.2) are determined and 
multiplied with the squared sensitivities to obtain the partial contributions to the output 
uncertainty σY

2. Sensitivities are assumed to be only dependent on research area and 
process description and not on data availability and model scales. On the other hand, 
uncertainties are assumed to be dependent on all these aspects, resulting from equation 
(2.2), (2.3) and (2.4) as well. The dependence of the sensitivity and the uncertainty on 
the mentioned aspects is shown in Table 2.1. 

Table 2.1 Presence of dependence of sensitivity (∂Y/∂xi) and uncertainty (parameters/ variables from 
(2.2), (2.3) and (2.4) LS, TS, c0, c1, c2, h, k) on aspects (research area, process description, 
data availability, model scale) indicated with X. 

Aspect Sensitivity Uncertainty 
 ∂Y/∂xi LS, TS  c0, c1, c2 h, k 
Research area X X X X 
Process description X  X X 
Data availability   X X 
Model scales    X 

The largest partial contributions to the output uncertainty should be reduced taking into 
account Table 2.1. This means for a fixed research area that uncertainties associated 
with large sensitivities should be reduced through adapting process descriptions, 
increasing data availability and changing model scales. Which adaptations take place 
depend for a specific process, parameter or input on the uncertainty contributions of the 
nugget part c0, spatial part c1 SL(h) and temporal part c2ST(k) of equation (2.2). 
Sensitivities should be recalculated when process descriptions are adapted (see Table 
2.1). The uncertainty reduction should proceed until uncertainty level G associated with 
an appropriate model for a specific situation is reached. 

The procedure will be applied to a simple river basin model. This application is meant 
to illustrate the procedure, rather than to derive an appropriate river basin model to 
assess the impact of climate change on flooding in the river Meuse. 
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2.1.3 Rainfall and river basin model 

Stochastic rainfall model 
The stochastic rainfall model used is a multivariate autoregressive lag-one model 
AR(1). This model incorporates main statistical characteristics of observed precipitation 
to generate spatially and temporally varying rainfall series. The model assumptions are: 
•  The rainfall process is a stationary one, i.e. its statistics do not change with time. 
•  The rainfall process has a uniform character, i.e. its statistics do not vary in space. 
•  There is correlation in time and space between rainfall amounts. 

The multivariate AR(1) model is described by 

(2.5) ( ) ( ) ( )tttt BεAZZ +−= ∆  

where the vector Z(t) is composed of n different but interdependent rainfall time series 
for different locations, A and B are nn ×  parameter matrices and the vector εεεε(t) consists 
of n uncorrelated random numbers originating from a symmetrical three-parameter 
gamma distribution (reflected with respect to the y-axis). It is assumed that A is a 
diagonal matrix with uniform non-zero elements equal to at determining the temporal 
correlation r(k) and transition probabilities from wet to wet days WW, dry to dry days 
DD etc.. Elements bij of B are obtained through a function relating distance between two 
locations |(x, y)i-(x, y)j| and parameter bs determining the spatial correlation r(h) [see e.g. 
Stol (1972)] 

(2.6) [ ]jisij yxyxbb ),(),(exp −−=  

The vector Z(t) is adjusted to obtain (positive) rainfall P(t) 
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The symmetrical gamma distribution is given by 
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with -∞ < x < ∞. The shape parameter αgs, scale parameter βgs and location parameter 
ξgs determine respectively the extreme behaviour of rainfall (represented by the kurtosis 
γ2), the average rainfall µ and the ratio wet to dry days W/D. The five parameters (at, bs, 
αgs, βgs and ξgs) have been determined in such a way that the above mentioned statistics 
of observed rainfall are approximated in a right way. 

The rainfall model is applied to the Meuse basin upstream of Borgharen (near the 
Belgian-Dutch border) which has a surface area of about 21 103 km2. Its parameter 
values have been obtained by means of observed rainfall (Stol, 1972; Berger, 1992; 
NOAA, 1999). Daily rainfall series for n = 64 points on a regular square grid (distance 
between points is approximately 20 km) for a 30-year period have been generated. 
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River basin model 
A simple river basin model with variable spatial and temporal resolution has been used 
as the ‘starting model’ in the appropriateness procedure. The model consists of a 
number of catchment cells N and river cells √N. Different resolutions are obtained by 
multiplying N with 4n depending on the actual N. These varying resolutions do not 
change model output for uniform and stationary input and parameters. The model 
structure for N = 16 is illustrated in Figure 2.3. This figure shows that each catchment 
cell in strip j receives effective precipitation (PE’) and discharges this precipitation to 
the adjacent cell in strip j in the river direction. The catchment cell that borders a river 
cell discharges into this river cell in strip j, from this river cell the water is transported 
further to the river cell in strip j+1 and finally to the outflow point. The water movement 
is described by means of a water balance for the catchment cells and the river cells in a 
dimensionless form in order to reduce the number of parameters. The dimensionless 
form is obtained through scaling with a spatial correlation length, a temporal correlation 
length, the surface area of the basin and the mean effective rainfall. A comprehensive 
description of the model is given in chapter 3.  

Nx∆2
x∆2 x∆2

i

NR1

 1

N

 j

)∆2,(' ttjQR +

),,(' tjiPE

C1

C2

C3

2
N 1

2
+N

 
Figure 2.3 River basin model with catchment cell position expressed in i and j, river cell position (R) 

expressed in j and cell dimensions expressed in x∆ . The input PE’ (i, j, t), output QR’ (j, 
t+2∆t) and water flow directions are illustrated for an arbitrary catchment and river cell (the 
figure has not been drawn to scale). 

The ‘starting model’ of the Meuse basin is the most simple one, namely when N = 1. 
This gives, with a spatial correlation length of 140 km and a temporal correlation length 
of 1 day, dimensionless model scales of ∆x’ =0.52 and ∆t’ = 1. Processes incorporated 
in this ‘starting model’ and parameter values used have been determined by using an 
observed daily rainfall-runoff series. The observed rainfall series is from a station near 
the center of the Meuse basin (Charleville-Mézières) for the period 1994-1997 (NOAA, 
1999). The observed discharge series is from the station Borgharen at the outflow point 
of the river basin model for the period 1994-1997 (Rijkswaterstaat, 1998). Runoff 
coefficients are assumed to be monthly means and have been obtained from observed 
rainfall and discharge during the period 1951-1980 (Berger, 1992). 

The design discharge Qp’ is derived by fitting a Gumbel distribution to the annual 
maximum discharges (see section 2.3). The annual maximum discharges are obtained 
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from a simulated daily Borgharen discharge series for a 30-year period by using one or 
more of the generated daily rainfall series. 

2.1.4 Results and discussion 

Stochastic rainfall model 
Parameter values for the rainfall model and related observed and simulated statistics are 
summarised in Table 2.2. It is found that observed and simulated statistics correspond 
good enough for the research purpose. Only the differences between observed and 
simulated temporal correlation r(k) and kurtosis γ2 are substantial. The first difference is 
because the parameter at determines besides the temporal correlation also the transition 
probabilities. Therefore at had to be chosen in such a way that the three statistics are 
jointly simulated as good as possible. The second difference (γ2) is due to the gamma 
distribution used. This distribution simulated the rainfall extremes quite well, however it 
was not able to reproduce the extremes of the extremes. These are small disadvantages 
of the rainfall model and should be kept in mind when interpreting the results. 

Table 2.2 Parameter values for the rainfall model and related observed and simulated rainfall 
statistics. 

Parameter Value of 
parameter 

Statistic Unit Value of statistic 

    Observed Simulated 
at 0.45 r(k) (1 day) - 0.24* 0.38 
  WW - 0.69* 0.66 
  DD - 0.71* 0.66 
bs 1.5 r(h) (25 km) - 0.84** 0.93 
  r(h) (50 km) - 0.75** 0.85 
  r(h) (100 km) - 0.64*,** 0.63 
      
αgs 0.15 γ2 (mm/d)4 19* 11 
βgs 100 µ mm/d 2.56*** 2.55 
ξgs 0 W/D - 0.92* 0.99 

* From daily observed rainfall of 3 stations in and around the Meuse basin (Charleville-Mézières, 
Metz and St. Dizier) during the period 1994-1998 (NOAA, 1999). 

** From spatial correlations between daily observed rainfall in the eastern part of the Netherlands 
(Stol, 1972). 

*** From observed rainfall in the Meuse basin during the period 1951-1980 (Berger, 1992). 

River basin model appropriateness procedure 
First the processes to be incorporated throughout the whole procedure were determined. 
Models with a different number of processes were obtained by varying the number of 
reservoirs in a catchment cell from m = 1 through m = 3. Simulations with these models 
(with calibrated parameters) resulted in model efficiency coefficients of respectively 
0.81, 0.84 and 0.85. A value of 1 would have implied perfect correspondence between 
observed and simulated discharge. On the basis of these coefficients no decision can be 
made. However, when comparing the discharge regimes associated with the three 
simulations, the one for m = 1 showed a too extreme behaviour. Therefore, two 
reservoirs were incorporated in the river basin model. The incorporated input, processes 
and parameters are summarised in Table 2.3. The processes in this table are effective 
rainfall (PE’), the fractions of effective rainfall infiltrating in reservoirs 1 and 2 (p1 and 
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p2), the total discharge from the adjacent catchment cells into a river cell (Q1’ and Q2’) 
and the discharge of the river basin (QR’). The parameters are a time-dependent runoff 
coefficient rc = (rc1, rc2,…., rcw), initial values for fractions p1 and p2 [pC1(i, j, 0) and 
pC2(i, j, 0)], the ratio of the lag constant of reservoir Cm to the lag constant of reservoir R 
(K1 and K2) and the lag constant of reservoir R in the river cell (kR’). 

Table 2.3 Incorporated input, processes and parameters and associated parameter values in the model. 

Input Process Parameter Value 
P    
 PE’ rc monthly mean 
 p1 pC1(i, j, 0) 0.5 
  pC2(i, j, 0) 0.5 
  K2 0.05 
 p2 pC1(i, j, 0) 0.5 
  pC2(i, j, 0) 0.5 
  K2 0.05 
 Q1’ K1 0.5 
 Q2’ K2 0.05 
 QR’ kR’ 0.5 

The above described model (N =1 and 2 reservoirs) is the ‘starting model’ for the model 
appropriateness procedure. The input is a daily rainfall series for one point (near the 
basin center) for a 30-year period. The parameter values of the spatio-temporal 
semivariogram described by (2), (3) and (4) for each input, process and parameter have 
been roughly estimated and are given in Table 2.4. Approximately, the right ratios 
between the different parameter values for the different variables were estimated, partly 
on the basis of literature (e.g. Blöschl and Sivapalan, 1995; Kitanidis, 1997; Hoosbeek, 
1998). The parameters LS and h are scaled with respect to the spatial correlation length 
(140 km) and the parameters TS and k are scaled with respect to the temporal correlation 
length (1 day). The root of the parameters c0, c1 and c2 are relative to their 
corresponding input, process or parameter value. 

Table 2.4 Parameter values √c0, √c1, LS, h, √c2, TS, k for input, process descriptions and parameters 
used in start simulation (dimensionless). 

Input/ 
process/ 
parameter 

Nugget Spatial Temporal 

 √c0 √c1 LS h √c2 TS k 
P 0.2 0.2 1.43 1.04 0.3 4 1 
PE’ 0.2 0 0.36 1.04 0.2 90 1 
p1 0.3 0.025 0.036 1.04 0.4 8 1 
p2 0.3 0.025 0.036 1.04 0.4 8 1 
Q1’ 0.2 0.05 0.036 1.04 0.4 4 1 
Q2’ 0.1 0.05 0.36 1.04 0.3 50 1 
QR’ 0.1 0.05 2.14 1.04 0.4 15 1 
rc 0.1 0.1 0.36 1.04 0.3 90 30 
pC1(i, j, 0) 0.2 0.3 0.036 1.04 0.1 8 100 
pC2(i, j, 0) 0.2 0.3 0.036 1.04 0.1 8 100 
K1 0.2 0.3 0.036 1.04 0.1 4 100 
K2 0.1 0.1 0.36 1.04 0 50 100 
kR0’ 0.05 0.1 2.14 1.04 0.1 15 100 
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Figure 2.4 Relative contributions of input, process descriptions and parameters to sensitivity, 

uncertainty and output uncertainty. 

1. The resulting sensitivity from equation (2.1) of the model output Qp’ (scaled with its 
reference value) with respect to the input, process descriptions and parameters 
(scaled with their reference values) is given in Figure 2.4. The sensitivities are given 
relative to each other and consequently their sum amounts to 100 %. When 
determining these sensitivities, it was found that Qp’ behaved approximately linearly 
with different values for input, processes and parameters.  

2. The uncertainty from equation (2.2) of the input, process descriptions and 
parameters (scaled with their reference values) relative to each other is given in 
Figure 2.4 as well.  

3. Finally, the partial output uncertainty contributions from equation (2.1) of the input, 
process descriptions and parameters relative to each other is given in Figure 2.4. The 
relative model output uncertainty σY/Qp’ (%) is in this case 69 % as could be 
expected from the very simple model used. It is emphasised that the parameters in 
Table 2.4 are roughly chosen and thus uncertain. The dimensionless model output 
Qp’ is 11.9. In the following, three steps of the model appropriateness improvement 
procedure are presented. 

Step 1. The largest partial contribution to the output uncertainty stems from P’. The 
nugget, spatial and temporal uncertainty contributions are comparable (not shown here). 
It has been decided to decrease the spatial contribution by including rainfall series from 
all stations (n = 64) in the simulations. An accompanying decrease of parameter √c1 for 
P’ from 0.2 to 0.1 was assumed. The resulting σY/Qp’ is 65 % meaning a decrease of 
‘only’ 4 % in the output uncertainty. However, Qp’ has changed dramatically to 7.7 due 
to the averaging effect of the input (average over 64 points). 

Step 2. The changed relative contributions similar to Figure 2.4 are calculated. The 
partial contribution from P’ is still the largest one, but the partial contribution from rc is 
considerable as well. The temporal uncertainty contribution of this latter parameter is 
the largest one, and therefore, this contribution has been decreased by modelling rc day-
dependent (w = 365) instead of month-dependent (w = 12) through a sine function. This 
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resulted in a decrease of parameter k for rc from 30 to 1. The resulting σY/Qp’ is 60 % (5 
% decrease) and Qp’ remains relatively unchanged. 

Step 3. The undesirable averaging effect of the input on the output in step 1 was 
assumed to decrease when the model scales (h and k) would be decreased. Parameter h 
was changed from 1.04 to 0.26 for all processes and P’ and parameter k was changed 
from 1 to 0.25 for all processes and rc. This change in both parameters preserves the 
same constant ratio between the space and the time scale of the model. The resulting 
σY/Qp’ is 58 %, only a 2 % decrease in output uncertainty. However, Qp’ has changed 
considerably (to 13.2, close to its original value), which seems to be more plausible 
when comparing with the observed Qp’ of 14.9 (or 4050 m3s-1 based on the annual 
maxima for 1911-1999). 

2.1.5 Discussion and introduction to framework 
The results of the stochastic rainfall model indicate that a relatively simple model is able 
to produce realistic rainfall statistics. The only substantial departure from observed 
statistics was found for the temporal correlation. However, when a higher spatial 
resolution for the rainfall is needed, another stochastic rainfall model should be used as 
the quality of the simulated statistics decreases dramatically for higher resolutions (not 
shown here). 

The application of the model appropriateness procedure showed that the procedure 
could give a good indication in which direction (input, process descriptions or 
parameters as well as nugget, spatial or temporal part) most profit can be gained when 
an appropriate model is required for a specific research area and objective. It was found 
that for this or a similar research area and objective, two reservoirs in the catchment cell 
already seem to be sufficient. Furthermore, the results indicated that a decrease of input 
uncertainty and uncertainties associated with the transformation of rainfall to effective 
rainfall were of particular importance. 

It is again emphasised that the application was meant to illustrate the procedure rather 
than to derive an appropriate model designed to assess the impact of climate change on 
flooding in the Meuse. The results should therefore be interpreted with caution because 
of the following reasons: 
•  The uncertainties in the parameters of the spatio-temporal semivariogram are 

substantial. 
•  When including more non-linear process descriptions to decrease output uncertainty, 

these process descriptions should still be linearised to maintain linearity necessary 
for the determination of the output uncertainty. Otherwise this output uncertainty 
should be determined in a different, more advanced manner. 

•  The determination of the output uncertainty is based on the independency of inputs, 
processes and parameters. This assumption will not hold in reality. In fact, it does not 
even apply to this river basin model as there are many interdependencies, e.g. 
between the initial infiltration parameters and the lag constants. 

Another disadvantage of this approach is the necessity of selecting a model before the 
start of the analysis and improvement procedure. Moreover, it is rather doubtful that this 
often simple starting model would be able to indicate where possible improvements 
should be made. It is therefore preferable to determine the characteristics of an 
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appropriate model (relevant processes, appropriate scales and accompanying process 
formulations) beforehand and implement these characteristics into an existing or a new 
model. 

Therefore, the framework will be adapted and improved in order to apply it to a more 
sophisticated model with which the appropriate model level for the research objective 
can be determined. The main concepts behind this adapted approach are: 
•  The criterion for model appropriateness remains the same; i.e. a model is appropriate 

if its output uncertainty is less than a specified value (G). 
•  The characteristics of the appropriate model are determined beforehand and can then 

be implemented into an existing or a new model. First, the dominant climatological 
processes (section 4.1) and hydrological processes (section 5.2) in a river basin under 
flooding conditions are determined. Then, appropriate spatial and temporal scales are 
determined for these dominant processes or associated variables. Several scale issues 
are therefore described in a more general way (section 2.3) and applied to the 
climatological processes (remainder of chapter 4) and hydrological processes 
(section 5.3). Finally, appropriate process formulations dependent on scale are dealt 
with (section 5.4). 

•  The resulting appropriate model is then used to assess the model output uncertainty 
which is compared with G. The output uncertainty is not assessed with the simple 
method of equation (2.1), because of the non-linearity and interdependence 
problems. A more elaborate uncertainty analysis method is used, which is chosen 
from a variety of uncertainty analysis methods (section 2.2). 

In this way an internally consistent model is obtained, because the dominant processes 
are suitably formulated at appropriate scales. However, it depends on the criteria for the 
appropriateness of scales, the formulations used and the data availability whether the 
complete model is also appropriate for the research objective. This can be revealed by 
comparing the output uncertainty with the specific criterion. When comparing the 
appropriateness framework in this section and the one described in the next chapters, it 
is found that besides an output uncertainty criterion, an internal consistency criterion is 
part of the framework. The appropriateness framework will be mainly based on this 
consistency criterion; the uncertainty criterion will be checked in chapter 6 of this 
thesis. 
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2.2 Model uncertainty analysis 

2.2.1 Introduction 
Uncertainty is a constant companion of scientists and decision-makers involved in 
climate change and impact research and management. This uncertainty arises from two 
quite different sources, incomplete knowledge and unknowable knowledge about the 
future (Hulme and Carter, 1999). Although it is recognised that it is of major concern to 
treat all uncertainties in climate change impact assessments (e.g. Boorman and Sefton, 
1997; Guo and Ying, 1997), a systematic quantification of uncertainties and uncertainty 
propagation is rarely performed. This has to do among other things with the complex 
models particularly used in climate change modelling. Uncertainty analysis consists of 
several, general accepted steps: 

•  Definition of the main uncertainty sources 
•  Assessment of additional uncertainty sources due to the mismatch of different 

process, measurement and model scales 
•  Estimation of propagation of uncertainty 
•  Communication of uncertainty 

Different scale issues will be considered in section 2.3. Even if the problem of the 
quantification of uncertainties could be resolved, it would remain to communicate these 
uncertainties to the decision and policy makers as well as to the general public (Morgan 
and Henrion, 1990). A detailed discussion about this subject is beyond the scope of this 
thesis. The two remaining steps will be considered in this section, namely the definition 
of the main uncertainty sources (2.2.2) and the quantification and propagation of 
uncertainty (2.2.3). 

2.2.2 Sources of uncertainty 
The primary sources of uncertainty defined by Morgan and Henrion (1990) are 
measurement errors, variability and model structure. Measurement errors can have a 
random nature (imprecision of the instrument) or a systematic nature (e.g. 
miscalibration). Variability is inherent in all natural processes exhibiting systematic and 
random variations. The spatial and temporal scales employed are related to this. The 
model structure introduces additional uncertainties, e.g. by simplifying relations 
between variables or by leaving out important variables. Another division of uncertainty 
sources is given by De Blois (2000). He defines model imprecision as the effect of three 
different sources, namely sources of uncertainty, inaccuracy and incompleteness. 
Uncertainty is caused by a lack of data or knowledge, or by the natural variability of the 
model input or model parameters, inaccuracy is caused by errors in the model 
schematisation and incompleteness is caused by leaving out certain model parts or 
relations between model parts. Lei and Schilling (1996) distinguish conceptual 
uncertainty due to incompleteness of the model structure and inaccuracy of the model 
formulations, parameter uncertainty and input data uncertainty. Numerous other 
divisions can be found in literature (e.g. Beck, 1987; Melching et al., 1990). In 
principle, it does not matter which division is used, the main point is that all dominant 
uncertainties are considered when determining the model output uncertainty. 
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Although some would make a distinction between variability and uncertainty and for 
example De Blois uses model imprecision, the term uncertainty will be used here to 
identify all kinds of uncertainty sources and their summation. A slightly modified 
version of the division of Melching et al. (1990) is used and given in Table 2.5. It seems 
that all divisions are similar and more or less fit in this table. Table 2.5 also shows the 
relation with the model appropriateness framework through the different components 
(processes, scales-statistics and formulations). Model parameter uncertainty is not 
explicitly considered in the framework, but is an artefact of the model formulations and 
the calibration data used. In the remainder of this section some of most dominant 
uncertainty sources in climate models and hydrological models are reviewed. 

Table 2.5 Different sources of uncertainty and their relation to the model appropriateness framework. 

Source Sub-source Appropriateness framework 
Randomness Scales Natural uncertainty 
Scaling issues Scales 
Measurement errors Scales Data uncertainty 
Inadequacy of data Scales 

Model parameter uncertainty  Scales/ Formulations 
Model incompleteness Processes Model structure uncertainty 
Model inaccuracy Formulations 

Climate models 
The uncertainty in future climate simulated by climate models is large, in particular for 
variables such as precipitation. Dickinson (1989) considered four main sources of 
uncertainty in climate projections: (1) sources of atmospheric composition, (2) aspects 
of the geochemical cycles of carbon, (3) the calculation of the radiative forcing and (4) 
the response of the climate system to this forcing. He focused his review on the latter 
source of uncertainty and identified four uncertainties of main concern: the transient 
adjustment to changing forcing controlled by ocean heat uptake, the response of cloud 
radiative properties, the changes in the cover of ice and snow in high latitudes and the 
shifts in regional climate patterns. These sub-sources seem to be mainly related to the 
model parameters and structure. The focus on the response of the climate system is 
quite common in climate change uncertainty analysis. Sources 1, 2 and 3 are often 
aggregated and represented by scenarios for future radiative forcing (e.g. Carter et al., 
1999), although strictly speaking these scenarios only represent different emission 
scenarios The scenarios can then be used as input in global climate models. Additional 
sources of uncertainty are ‘surprises’ and climate change projections for specific 
regions. Surprises are rapid, non-linear responses of the climate system to 
anthropogenic forcing, e.g. reorganisation of the thermohaline circulation (Ganopolski 
et al., 1998) and rapid deglaciation (Oppenheimer, 1998). None of these are explicitly 
simulated in climate models, nevertheless the conditions for surprises exist (Hulme and 
Carter, 1999). This accumulation of uncertainty has been described as an uncertainty 
explosion (Henderson-Sellers, 1993). 

Hulme and Carter (1999) consider four sources of uncertainty as well: the global system 
predictability (future emissions; sources 1, 2 and 3), the climate sensitivity, the climate 
system predictability and the sub-grid scale climate variability. The second and third 
source are largely related to model structure and the latter one also refers to scaling 
issues. The climate sensitivity can be compared with Dickinson’s response of the 
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climate system. Visser et al. (2000) used the integrated assessment model DIALOGUE 
to analyse the four sources of Dickinson and concluded that the key source of 
uncertainty in climate change projections is found to be the uncertainty in radiative 
forcing models (source 3). Including all these sources in the projected range of global 
warming give ranges beyond those projected by the IPCC (1996) (3.7 °C). Additionally, 
Jones (2000) came up with an even larger range of regional scenarios. 

Hydrological models 
The use of rainfall-runoff models to assess the response of a catchment to climate 
change inevitably introduces additional uncertainties. The division of sources of 
uncertainty in Table 2.5 applies quite well to hydrological models, as it stems from a 
framework for the reliability analysis of watershed models (Melching et al., 1990). It is 
common practice in estimating model output uncertainty to presume that model 
calibration explains all sources of uncertainty. Then, means and variances of the 
parameters are calculated after calibration with multiple events and then propagated 
through the model (e.g. Binley and Beven, 1991; Lei and Schilling, 1994). In this way 
model structure uncertainties are not included and the total uncertainty is 
underestimated. In particular these model structure uncertainties are difficult to estimate 
(as for the climate models). They can be assessed for example by model validation and 
intercomparison (Ye et al., 1997), including all kinds of events (dry-wet, smooth-peaky 
etc.) in the calibration that trigger all relevant processes (Lei and Schilling, 1996) or 
including besides flux variables also state variables such as groundwater levels in the 
model calibration and validation (Lamb et al., 1999). 

2.2.3 Quantification and propagation of uncertainty 
Once the main uncertainty sources have been identified, they should be quantified and 
propagated through the model system to obtain the model output uncertainty. 
Uncertainty can be quantified through simple ranges (minimum-maximum), statistical 
moments, quantiles or complete cumulative distribution functions and probability 
density functions. These statistics and related scale issues will be dealt with in section 
2.3. An overview of the commonly employed uncertainty propagation methods will be 
given below approximately in increasing order of complexity. Applications to 
climatological or hydrological problems will be simultaneously considered. 

The model output Y (random variable) is a function of a n-dimensional independent 
random vector X = (x1, x2,….,xn), Y = f(X). The essence of uncertainty propagation 
analysis is to explore the statistical properties of Y based on the statistical properties of 
X. Generally, the complete probability density function of Y can not be derived a-priori 
from the probability density functions of X (if these are known), however often first and 
second moments of Y can be obtained from statistical properties of X. 

Model validation and intercomparison 
Model validation involves comparison of statistics of model output Ym and observations 
Yo. The propagation of input, model and parameter uncertainties is therefore not 
explicitly taken into account, but only implicitly through the observations. A more 
thorough validation is achieved by comparing statistics of model input and model 
variables Xm with observations Xo as well. An example is the comparison of modelled 
and observed groundwater levels in a rainfall-runoff model when only catchment runoff 
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is of interest. Applications of this type of validation are less frequent, an example being 
Lamb et al. (1999) who used spatially distributed water table observations to constrain 
uncertainty. 

Model intercomparison is similar to model validation and implies comparison of output 
statistics from model 1 and model 2 (Ym1 and Ym2). This should always be accompanied 
with model validations to see differences with observations. Model validation and 
intercomparison only give a range of possible model outcomes, but neither give 
uncertainties in the strict sense as probability distributions nor as standard errors or 
deviations. Intercomparison is particularly popular in climate modelling and has been 
done in large projects as AMIP (atmospheric model intercomparison project) (Gates, 
1999) and CMIP (coupled model intercomparison project) (Meehl, 2000). The 
usefulness of these comparisons has to do with the fact that the models are relatively 
similar and the data, initial and boundary conditions often are prescribed. On the other 
hand hydrological model intercomparisons often consider completely different model 
structures and formulations of various complexities (e.g. Loague and Freeze, 1985). It 
then becomes quite difficult to compare different models and almost impossible to 
assess uncertainties, because many components are compared at the same time. 

Sensitivity and scenario analysis 
Sensitivity analysis involves the analysis of the changes in Y due to changes in X. The 
most common form is univariate sensitivity analysis in which only one component of X 
(xi) at the same time is allowed to vary and the others remain constant (e.g. Mearns et 
al., 1997). This approach is particularly useful for the assessment of the individual role 
of a component in determining Y. Additionally, information about the importance of the 
different uncertainty contributions can be obtained. Bivariate sensitivity analysis implies 
the variation of two components of X keeping the others at a constant value. This kind 
of analysis is particularly useful in determining the interdependence between different 
components. Multivariate sensitivity analysis embraces the exploration of in particular 
the parameter part of the vector space X in order to find an optimal set of parameters 
(e.g. Seibert, 1997). As with model validation and intercomparison, sensitivity analysis 
gives ranges of model outcomes, but has the advantage of explicitly incorporating the 
contributions of different uncertainty sources. 

Scenario analysis is strongly related to sensitivity analysis and is treated separately 
because it is the technique mostly used in climate research today. The distinction 
between these two is more related to how the information is used than to the tools 
involved. Scenario analysis is intended to be policy relevant and comprises a specific, 
consistent set of X. Several of these scenarios with many varying components xi can be 
used to establish a range of model outputs. The recent IPCC assessment made use of 
several, strongly differing scenarios to assess a range in future climate (Carter et al., 
1999). 

First-order analysis 
First-order analysis is derived from Taylor’s linear approximation of Y around the mean 
of X µ(X) in which linear components are truncated 
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Equation (2.11) is equal to equation (2.1) which has been used to assess the model 
output uncertainty in section 2.1. The main advantages of first-order analysis are its 
simplicity, the partitioning of the model output uncertainty into its various contributions 
and the two moments of Y expressed as functions of the moments of X. The 
disadvantages have been discussed in 2.1.5 and were found to be the assumptions of 
linearity in the region around µ(X) and the independence of the different components xi. 
Hydrological applications of first-order uncertainty analysis are numerous, an example 
being Melching et al. (1990). They applied data, parametric and model structural 
advanced first-order second moment uncertainty analysis to the HEC-1 rainfall-runoff 
model. The main conclusion was that the major prediction uncertainty is from rainfall 
excess estimation. Climatological applications of first-order analysis were not found in 
literature. 

Monte Carlo analysis 
Monte-Carlo analysis involves the random sampling of components xi from the input 
vector X and the determination of the model output Y. The quality of the probability 
distribution of Y obviously depends on the sampling number for which a generally valid 
value hardly can be given. The use of an efficient sampling technique can restrict the 
number of simulations needed. An example is Latin Hypercube sampling in which 
probability distributions of X are divided into intervals and samples are randomly 
(standard) or regularly (midpoint) taken from each interval (Morgan and Henrion, 
1990). Advantages of the Monte-Carlo analysis are the general applicability for 
estimation of response statistics of any nonlinear and/or discontinuous model and the 
possibility to obtain probability distributions of Y given the probability distributions of 
X. Disadvantages of the Monte-Carlo analysis are the computational demand and the 
inability to show uncertainty contributions of each component. This latter disadvantage 
can be partly overcome by applying several techniques such as scatterplots, regression 
analysis and correlation analysis. Examples of hydrological applications (e.g. Harlin and 
Kung, 1992; Uhlenbrook et al., 1999) can be found more frequently than climatological 
applications, an exception being a study of Shackley et al. (1998) that includes Monte 
Carlo analysis in modelling the global carbon cycle. 

Other analysis methods 
Other uncertainty analysis methods include Rosenblueth uncertainty analysis (Binley et 
al., 1991), statistical linearisation (Lei and Schilling, 1994), Bayesian uncertainty 
analysis (Patwardhan and Small, 1992; Tol and Vos, 1998), response surface methods 
(Morgan and Henrion, 1990) and stochastic differential equations (Zapert et al., 1998). 
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These methods partly have aspects of the described methods and partly introduce new 
concepts. They will not be considered here and the uncertainty analysis method to be 
employed in chapter 4 for the climatological analysis and in chapter 6 for the combined 
climatological-hydrological analysis will be chosen from the methods described. 

Choice of methods 
The choice of the uncertainty analysis methods will be based on the following criteria: 
•  Uncertainty about the model structure; the relative importance of parameter 

uncertainty vs. model structure uncertainty 
•  Nature of the model; magnitude of uncertainties and kind of behaviour (e.g. 

complexity) 
•  Requirements of the analysis; research purpose and statistical quantity required 
•  Previous comparisons of uncertainty analysis methods 
•  Time and computational resources available 

The complexity of general circulation models (GCMs) largely determines the choice of 
a method for the climatological uncertainty analysis. First-order analysis is impossible 
because of the highly non-linear relations in a GCM and Monte Carlo analysis 
infeasible due to computational problems. Moreover, the availability of only GCM 
output restricted the choice to model validation and intercomparison in stead of 
sensitivity or scenario analysis. This model validation and intercomparison with respect 
to the most important variables from the hydrological point of view will be performed in 
chapter 4. 

The method for the climatological-hydrological uncertainty analysis is less dependent 
on the complexity of the (hydrological) model. However, first-order analysis seems to 
be less appropriate due to some non-linearities such as rainfall infiltration and quick 
runoff and the interdependence of input and parameters (see section 2.1). Sensitivity 
analysis and model validation and intercomparison do not seem to be enough in this 
case, because more than just averages and variances are of importance. An additional 
(stratified) Monte Carlo analysis should be performed to obtain necessary information 
about the tails and shape of the probability distribution. Several comparisons between 
different uncertainty analysis methods and Monte Carlo analysis have been performed 
(e.g. Garen and Burges, 1981; Melching, 1992; Nandakumar and Mein, 1997). All these 
comparisons favour application of Monte Carlo techniques as well, but emphasise the 
disadvantages mentioned (computational burden and inability to show uncertainty 
contributions). Therefore, a simplified, stratified sampling analysis and an additional 
sensitivity analysis have been performed. 
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2.3 Statistics and scales 

2.3.1 Spatial and temporal scales 

 
Figure 2.5 Hydrological processes at a range of characteristic space-time scales (Blöschl and 

Sivapalan, 1995). 

Hydrological processes occur at a wide range of scales in space, from unsaturated flow 
in a 1 m soil profile to floods in river systems of a million square kilometres, and in 
time, from flash floods of several minutes duration to flow in aquifers over hundreds of 
years (Blöschl and Sivapalan, 1995). Hydrological processes span about eight orders of 
magnitude in space and time (Klemeš, 1983). Figure 2.5 shows a classification of 
hydrological processes according to typical space and time scales. Shaded regions show 
characteristic space-time combinations of hydrological variability. ‘Scale’ can refer to 
natural variability, observations or models in space and time. This process, 
measurement and modelling scale consists of a scale triplet involving extent, spacing 
and support (Blöschl and Sivapalan, 1995). ‘Extent’ refers to the overall coverage, 
‘spacing’ refers to the distance between measurements or model elements and ‘support’ 
refers to the integration volume or area. All three components of the scale triplet are 
needed to uniquely specify the space and time dimensions of a process, measurement or 
model. The scale triplet is illustrated in Figure 2.6. 
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Figure 2.6 Definition of the scale triplet for natural processes (a), measurements (b) and models (c). 

Ideally, processes should be measured and modelled at the scale they occur. However, 
this is not always necessary depending on the problem which has to be solved. It was 
therefore stated in section 1.3 that appropriate scales should be used in models 
depending on sensitivities and a right balance between uncertainties of input, model 
structure and model parameters. Differences between process, measurement and 
modelling scale will introduce differences between the true (i.e. natural) variability and 
the variability apparent in the data or the model (Western and Blöschl, 1999). 
Obviously, also differences between the variability apparent in the data and the models 
exist. To bridge these gaps ‘scaling’ is needed, which means that statistical information 
is transferred from a given scale to a smaller scale (downscaling) or larger scale 
(upscaling) (Gupta et al., 1986). Therefore, in this section important statistics and their 
dependence on scales are considered. First some definitions are introduced. 

Natural, continuous process variables are approximated by means of discrete measured 
or modelled variables and thus are not assessed directly. For this reason, only statistics 
and scales with respect to measured and modelled variables are considered. A measured 
or modelled variable as a function of space and time x(s,t) with 1 ≤ s ≤ S and 1 ≤ t ≤ T is 
defined, where S is the number of locations in the space domain ΛΛΛΛd [here (Λ1,Λ2)] and T 
the number of time steps in the time domain Ωd. Then the spatial scales in terms of 
extent Le, spacing Lsp and support Lsup are defined as 

(2.12) deL Λ=  
S

d
spL

Λ
=  Λ== ΛsupL  

and the temporal scales are defined as 

(2.13) deL Ω=  
T

L d
sp

Ω
=  Ω=supL  

where ΛΛΛΛ and Ω are respectively the area and time period over which the measurements 
or model results are aggregated. It should be noted that in many models Lsp = Lsup. 
Unless explicitly mentioned, scale will refer to support in this section and is denoted 
with L (1-dimensional, specific case), Λ (1-dimensional, general case) and ΛΛΛΛ (2-
dimensional, general case). 
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2.3.2 Zero-order statistics and scales 
Zero-order statistics considered are the probability density function (PDF) and the 
cumulative distribution function (CDF). These can be determined by plotting ordered 
values and fitting a function or by fitting a theoretical PDF or CDF with appropriate 
parameters. The theoretical PDF’s and CDF’s used in this thesis are described and an 
introduction to PDF’s and CDF’s as a function of scale is given. 

The exponential PDF and CDF with scale parameter βe are defined as 
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with its mean and variance respectively βe and βe
2. The assumption of x being 

exponentially distributed is tested with the simple, but powerful probability plot 
correlation test (Filliben, 1975). This test uses the correlation between ordered values 
and the corresponding fitted quantiles determined by plotting positions (Probability Plot 
Correlation Coefficient). PPCC values near 1.0 suggest that the values could have been 
drawn from the fitted distribution. However, applying the PPCC test statistic to a large 
number of values would almost always mean a significant rejection of the hypothesis on 
an irrelevant basis (Albers, pers. comm.) and in that case probability plots should be 
used (visual inspection). The Gringorten plotting position is used for exponentially 
distributed values (Gringorten, 1963). Critical values are obtained from D’Agostino and 
Stephens (1986). 

The gamma PDF with shape parameter αg and scale parameter βg is defined as 
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with its mean and variance respectively αgβg and αgβg
2. A closed-form expression for 

the CDF is not available and tables or approximations must be used. The assumption of 
x being gamma distributed is tested with the probability plot correlation test as well. A 
combination of Blom’s plotting position (Blom, 1958) and Kirby’s (1972) algorithm for 
the inverse gamma distribution is used for gamma distributed values. Critical values are 
obtained from Vogel and McMartin (1991, 1992). 

The Gumbel PDF and CDF for extreme values with scale parameter βG and location 
parameter ξG are defined as 
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with its mean and variance respectively ξG+ηβG and π2βG
2/6 and η ≈ 0.5772. The 

assumption of X being Gumbel distributed is again tested with the probability plot 
correlation test. The Gringorten plotting position is used for Gumbel distributed values. 
Critical values are obtained from Maidment (1993). 

Aggregation generally decreases variability and therefore changes the probability 
distribution. More values around the mean will be found instead of values at the lower 
and upper tail of the distribution. This effect is qualitatively illustrated in Figure 2.7. 

L1 L2

µ σ µ σ  
Figure 2.7 Probability density function for scale L1 and scale L2 > L1 with mean µ and standard 

deviation σ. 

2.3.3 First-order statistics and scales 
First-order statistics considered are the mean and the conditional and unconditional 
probabilities for different variable states. Additionally, these statistics as a function of 
scale will be considered. 

The mean in space µΛΛΛΛ(t), time µΩ(s) and space-time µΛΛΛΛΩ are estimated as 
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These definitions automatically enable comparison between different space and time 
scales. 

A state i of x(s,t) is defined in the time domain as xi-1 < x(s,t) ≤ xi. Consider N different 
states {i = 1,…, N}, then the unconditional probability pi(s) is defined as the number of 
states i divided by the total number of states {i = 1,…, N} 
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Equation (2.18) can be applied to the average of S point time series µΛΛΛΛ(t) and a spatially 
aggregated time series x(ΛΛΛΛ,t) to enable comparison between space scale L1<ΛΛΛΛ and 
L2=ΛΛΛΛ.  

When only a few point time series within area ΛΛΛΛ are available, the average points 
unconditional probability µΛΛΛΛ(t) can be determined for two different states in another 
way as well. The methodology used is described in detail by Osborn and Hulme (1997) 
for the comparison of station (point) and modelled (spatially averaged) precipitation. 
They introduced a new statistic between two point time series at distance h as the 
probability that both points are in state i=1 (dry) at time t given that at least one is in 
state i=1 at time t 
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This statistic between one point and every other point is plotted against h and a decay 
function can be fitted to the results 
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The goodness-of-fit is tested by a similar correlation coefficient as used for the 
distribution functions, i.e. the correlation between 1/u(s,h) and h (PPCC*). The values 
of υ1 and υ2 in space ΛΛΛΛ are averaged and equation (2.20) can be integrated over ΛΛΛΛ to 
produce a mean statistic υ  
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where |Λ| represents the maximum distance within ΛΛΛΛ and f(h) is the PDF of the random 
variable h representing the distance between any two points randomly chosen. 
Assuming a square area ΛΛΛΛ with sides a=Λ1=Λ2 the PDF is as follows (Ghosh, 1951) 
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This PDF for a square will be used here for simplicity, although some model grid boxes 
are not completely square. Osborn and Hulme related υ  to p1(ΛΛΛΛ) (spatially averaged) 
divided by the average p1(s) (point) through a linear function (which seems to be 
plausible, since for 0.3 < υ  < 1.0 the function is rather linear) 
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in which β1 and β2 are two parameters dependent on S and R1 is a reduction factor. 
Osborn and Hulme determined β1 and β2 for up to S = 15 precipitation stations in a grid 
box and used these values as an estimate of grid box means p1(ΛΛΛΛ), because they did not 
expect much change in the parameters with increasing S. The parameters were 
determined with data from three different regions; Europe, China and Zimbabwe and 
can be found in Osborn and Hulme. Given the strength of the correlation found in 
(2.23), the similarity of the datasets and the range of precipitation regimes covered by 
the combined datasets (υ  varied from 0.25 to 0.98), the parameters derived are likely to 
be generally applicable. The derived state i=1-probabilities easily reveal the associated 
state i=2-probabilities when two states are considered. The reduction factor R1 as a 
function of the dimensionless scale a/υ2 is given in Figure 2.8 for υ1 = 0.85.  
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Figure 2.8 Reduction factor R1 as a function of the dimensionless scale a/υ2 for υ1 = 0.85. 

Consider N different states {i = 1,…, N} at time t = t and N different states {j = 1,…, N} 
at time t = t-1, then the conditional probability pij(s) is estimated as 

(2.24) ( )
( ) ( )

T

xtsxxxtsxx
sp

T

t
jjii

ij

∑ ≤−<≤<
= =

−−
1

11 )1,|,(
 

In this way an NXN state transition matrix can be composed. As before, equation (2.24) 
can be applied to an average points time series µΛΛΛΛ(t) and a spatially averaged time series 
x(ΛΛΛΛ,t) to enable comparison between space scale L1<ΛΛΛΛ and L2=ΛΛΛΛ. 
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2.3.4 Second-order statistics and scales 
Second-order statistics considered are the variance, the correlation and the semi-
variance. Also, their relation with scales will be discussed.  

The variance in space σΛΛΛΛ(t) and time σΩ(s) are estimated as 
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Because more frequently used, the variance in time will be considered in the remainder 
of this chapter and for convenience the subscript Ω will be omitted. 

Equation (2.25) can be applied to an average points time series µΛΛΛΛ(t) and a spatially 
averaged time series x(ΛΛΛΛ,t) to enable comparison between space scale L1<ΛΛΛΛ and L2=ΛΛΛΛ. 
The variance of the spatially averaged time series (apparent variance) is more directly 
related to the average point variance (true variance) as follows 
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The variance reduction factor κ2 decreases with increasing ΛΛΛΛ. The magnitude of this 
factor depends on the spatial correlation structure of the variable and the size and shape 
of the area. Rodriguez-Iturbe and Mejia (1974) showed for a stationary isotropic spatial 
random field that κ2 is the expected value of the correlation coefficient ρ between any 
two points randomly chosen at distance h 
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where |Λ| represents the maximum distance within ΛΛΛΛ and f(h) is the PDF of the random 
variable h from (2.22). For large S, the variance of the average points time series is 
approximately equal to the variance derived with (2.26) as can be shown by the 
following formula (after Yevjevich, 1972) 
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where ρ  = κ2. Using (2.27) and an exponential correlation function, κ2 is given as a 
function of the dimensionless scale a/λ in Figure 2.9 (λ is the correlation length). For 
every point s the spatial correlation length λ(s) can be determined by fitting the 
exponential correlation function to all correlation coefficients vs. distance for point s. 
The λ to be used in (2.27) is the average of all λ(s)’s in space ΛΛΛΛ (Osborn and Hulme, 
1997). Obviously, other correlation functions can be used as well. 
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Figure 2.9 Variance reduction factor κ2 as a function of the dimensionless scale a/λ. 

In this way, the apparent variance due to aggregating over support scale Lsup = Λ = a can 
be directly obtained from the true variance. The apparent variance due to spacing (Lsp) 
is equal to the true variance, because this variance can be interpreted as the variance of 
n point samples which is close to the population variance provided n is not too small 
(Matalas, 1967). Finally, the apparent variance of a process with the extent limited to a 
square of side length Le = a is the variance within the square (Western and Blöschl, 
1999) 
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The effect of support and extent on apparent variance is illustrated in Figure 2.10. It can 
be derived from this figure that the support scale should be sufficiently small (e.g. 20 % 
of the correlation length if a bias of 10 % in estimating the true variance is permitted) 
and the extent should be sufficiently large (more than 5 times the correlation length) 
when estimating the true variance. 
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Figure 2.10 Effect of the measurement or modelling scale in terms of support (solid line) and extent 
(dotted line) on the apparent variance. 
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The lag h spatial correlation coefficient r(h) and the lag k temporal correlation 
coefficient r(k) are respectively estimated as 
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Both coefficients are in the time domain and for convenience the subscripts have been 
omitted. These correlation coefficients can be approximated by exponential functions 
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where α1 and α2 are constants representing the nugget effect or the microvariability at a 
scale smaller than the separation distance (either space or time) between the closest 
measurement points. Variables λ and τ are respectively the spatial and temporal 
correlation lengths 
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These lengths should not be confused with the commonly used range; i.e. the distance 
where ρ falls to 0.05 (see section 2.1, LS ≈ 3λ or TS ≈ 3τ). The exponential behaviour of 
the correlation functions (2.32) and (2.33) is tested by a similar correlation coefficient 
as used before; i.e. the correlation between minus the logarithm of correlation and 
distance PPCC*. 

The spatial and temporal variability can be described by the semi-variance as well. This 
quantity is estimated by 
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These semi-variances can be approximated by exponential functions (see e.g. Kitanidis, 
1997). A slightly modified version of the exponential model from geostatistical theory 
is 
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The estimated semivariances can be plotted against separation distance (h or k) to obtain 
the experimental variogram. The parameters in (2.32) approximating (2.30) should 
agree with the parameters in (2.37) approximating (2.35) and so on. Actually, the 
variogram is a way of representing the spatial and temporal variability in another way. 
A variogram can give insight in the spatial and temporal ranges and the variance 
contributions from several sources (nugget, spatial and temporal). Their relative 
importance can be examined by combining the spatial and temporal variogram into a 
spatio-temporal one as has been done in equation (2.2) 

The above mentioned statistics apply to numerical variables, but can not be used for 
categorical variables such as land use. These variables are time invariant in this research 
and therefore the spatial variability of these variables is described by defining a so-
called semi-correlation r* as 
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where m is a specific category of x(s) resulting in xm(s), n is an arbitrary category of x(s) 
and M is the total number of categories. For each category m, the semi-correlation r* can 
be plotted as a function of the separation distance h to obtain a semi-correlogram from 
which the spatial correlation length for each category can be estimated (as described for 
continuous variables). 

Relationships for apparent correlation lengths and apparent variograms due to support, 
spacing and extent scale are not considered here and can be found in Western and 
Blöschl (1999). 

2.3.5 Higher-order statistics and scales 
‘Higher’-order statistics considered are the T-year return values RV(T). These are 
estimated as follows 

(2.40) ( ) GGG TKTRV σµ +=)(  

where µG and σG are the mean and standard deviation derived from the Gumbel 
parameters (see 2.3.2) and KG(T) is the frequency factor 
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The standard error SE(T) in determining RV(T) is (Shaw, 1994) 

(2.42) ( ) ( )( )2
2

1.114.11)( TKTK
N

TSE GG
G ++=

σ
 

Then, lower and upper confidence limits can be calculated for a specific RV(T) 

(2.43) )()( 1, TSEtTRV N −± α  

where tα, N-1 are values of the Student t-distribution with α the probability limit required, 
N the available sample of years and N-1 degrees of freedom. 

Equation (2.40) can be applied to an average points time series µΛΛΛΛ(t) and a spatially 
averaged time series x(ΛΛΛΛ,t) to enable comparison between space scale L1<ΛΛΛΛ and L2=ΛΛΛΛ. 
The spatially averaged return values are more directly related to the average point return 
values through expressions relating the parameters of the Gumbel distribution (βG and 
ξG) for point and spatially averaged extreme values. Sivapalan and Blöschl (1998) have 
derived these expressions with respect to precipitation for different durations. 

The main assumption is that non-zero point values x(s,t) stem from an exponential 
distribution, non-zero spatially averaged values x(ΛΛΛΛ,t) stem from a gamma distribution 
(see e.g. Sivapalan et al., 1990) and point and spatially averaged extreme values (e.g. 
annual maxima) X stem from a Gumbel distribution. Here, the relations for different 
durations have been modified to obtain expressions for one duration (daily time step) 
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In this way, generalised Gumbel parameters as a function of correlation structure and 
area (through κ2) are obtained and can be compared with corresponding parameters 
obtained from the ‘direct averaging’ approach. The areally averaged return value RVA 
relative to the point return value RVp is shown as a function of the dimensionless 
aggregation scale a/λ in Figure 2.11. 
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Figure 2.11 Return value reduction factor RVA / RVp as a function of the dimensionless scale a/λ. 

Sivapalan and Blöschl (1998) used the correlation structure of complete precipitation 
fields in their precipitation extreme value analysis, assuming that the correlation 
structure of precipitation does not change with return period. However, extreme 
precipitation fields generally exhibit more spatial variability and consequently λ will be 
smaller. This results in a larger reduction of extreme precipitation values with 
increasing area. Therefore, λ’s determined from extreme precipitation fields should be 
used as opposed to the approach of Sivapalan and Blöschl who used complete 
precipitation fields. This is achieved by analysing annual maximum precipitation fields. 
These fields are defined as the spatially varying precipitation fields associated with the 
annual maximum of precipitation averaged over the whole field. The spatial variability 
of an annual maximum precipitation field can be characterised by a variogram [see 
equation (2.37)] and λ for a specific annual maximum precipitation field can be 
determined. The λ averaged over the available sample of years is then used in equation 
(2.27) and subsequently in equations (2.44) and (2.45). 

2.3.6 Statistics and appropriate scales 
The statistics vs. scale relations for wet day frequency and variance have been checked 
by Osborn and Hulme (1997) and those for extreme values have been verified by 
Sivaplan and Blöschl (1998). These theoretical relations agreed reasonably with the 
observations at different scales. Therefore, the statistic-scale relations and an 
accompanying permitted bias from the true statistic can be used to determine the 
appropriate scale for a statistic. This is illustrated in Figure 2.12, where an example of 
the reduction of an arbitrary statistic as a function of dimensionless aggregation scale 
(a/λ) is shown. The dotted line illustrates the determination of the appropriate scale 
assuming a permitted bias of 10 %. Similar figures can be constructed for all reduction 
functions considered, although some differences exist between for example reduction 
functions for variance and return values (dimensionless appropriate scale respectively 
0.25 and 0.21 for a 10 % bias). It depends on the variable of interest which statistic is 
important and thus which dimensionless appropriate scale applies. 
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Figure 2.12 Assessment of statistic at appropriate scale by means of reduction function. 

2.3.7 Integration of appropriate scales 
The appropriate scales for each key variable and process should be combined to derive 
an appropriate river basin model scale. For variables and processes with smaller 
appropriate scales than this appropriate model scale, distribution functions may be used 
to solve the sub-grid scale variability or values and processes may be simply averaged. 
For variables and processes with less variability, constant values may be used over 
several appropriate model scales. The integration of separate appropriate variable and 
process scales towards an appropriate model scale will be considered by means of 
relations between key variable scales and the output variable. The relative importance of 
the separate appropriate variable and process scales is dependent on the sensitivity of 
the model output to changes in these scales. This sensitivity can be assessed by means 
of a sensitivity analysis, however when no specific model is available another method 
should be employed. The SCS method (see e.g. Maidment, 1993) is used for this 
purpose, because an approximate estimation is required and the model output of interest 
is the peak discharge. 

The peak discharge qp in the SCS method is derived from a triangular approximation to 
the hydrograph shown in Figure 2.13 resulting from a rainfall excess intensity pe of 
duration Tp (and volume Pe = peTp). The lag Tl from the centroid of rainfall excess to the 
peak and the time of rise Tq to the peak are illustrated as well. The base length of the 
hydrograph 2.67 Tq is based on the study of many unit hydrographs (Maidment, 1993) 
The volume of runoff under the hydrograph Vp is derived with the basic SCS 
relationship 

(2.46) 
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where Vp and Pe are in mm and CN is the well-known curve number dependent on soil 
type, land use type and hydrologic condition of the land surface. CN values can be 
found in extensive tables (e.g. Maidment, 1993) and vary between 20 and 100. Equating 

0.21 
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the volume Vp to the volume ½ qp 2.67 Tq in Figure 2.13, rearranging and adjusting for 
units gives qp in m3s-1 

(2.47) 
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where A is the catchment area in km2, Tp is in hours and Tl is in hours as follows (Kent, 
1972) 
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where l is the hydraulic length of the catchment in km and SO is the overland slope in 
parts per 10000. 
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Figure 2.13 SCS triangular hydrograph. 

The sensitivity of the peak discharge to changes in variable scales is assessed by 
introducing variable-scale relationships into equation (2.47) instead of the constant 
variables such as Pe, CN and S0. For example if CN and S0 are used as indicators for 
respectively soil type/ land use and topography, CN-scale/ S0-scale relations can be 
incorporated into (2.47). A precipitation-scale relation can be directly implemented into 
equation (2.46). In this way, relationships between the key variable scale and the output 
variable are established. These relationships are used to assess the weights associated 
with an appropriate process or variable scale. The weights are multiplied with the 
appropriate scales to obtain the appropriate model scale. The results of this assessment 
will be discussed in chapter 4 and 5. 
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2.4 Summary and conclusions 
A preliminary appropriateness framework has been described and was found to be 
inadequate, because of the simplified assumptions done and the necessity of selecting a 
model before the start of the procedure. Therefore, a more general model 
appropriateness framework has been introduced implying the determination of the 
dominant processes and variables, the appropriate scales and the associated appropriate 
process formulations. In this way, the characteristics of an appropriate model are 
determined beforehand and can be implemented in an existing or new model. So, an 
internally consistent model is obtained, although it depends on the criteria for the 
appropriateness of scales, the formulations used and the data availability whether the 
complete model is appropriate for the research objective. This can be revealed by 
comparing the output uncertainty of the appropriate model with a specific uncertainty 
criterion. The appropriateness framework is thus mainly based on a consistency 
criterion with an additional uncertainty criterion. 

The key uncertainty source in climate change projections is the uncertainty in radiative 
forcing models. The input and parametric uncertainty are sources mainly accounted for 
in hydrological uncertainty analyses, although model structure uncertainty can be a 
considerable source as well. Several uncertainty propagation methods can be applied to 
climate and hydrological models. A model validation and intercomparison will be done 
for climate models and a simplified Monte Carlo analysis with an additional sensitivity 
analysis will be performed for the hydrological model. 

A methodology has been described to assess the appropriate scale for a particular 
variable. This appropriate scale is assumed to be equal to a fraction of the correlation 
length of that variable. The fraction is determined on the basis of relationships between 
statistics and scale accepting an error in the estimation of the statistic of 10 %. This 
results in fractions of the correlation length between 0.20 and 0.25 for different statistics 
such as the standard deviation and the return value. The integration of these appropriate 
variable scales to an appropriate model scale is done by multiplying the appropriate 
variable scales with associated weights. The weights are based on SCS curve number 
method relationships between the peak discharge and some specific parameters. The 
values of these parameters are dependent on the scale of each variable and in this way, 
relations between the peak discharge and the variable scale are developed. Finally, the 
weights are determined and multiplied with the appropriate variable scale to obtain the 
appropriate model scale. 
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Chapter 3  

Rainfall and basin model scale effects 

3.1 Introduction 
In chapter 2 the appropriateness framework was introduced. It roughly consists of three 
components: the assessment of dominant processes, the determination of appropriate 
scales and the evaluation of accompanying process descriptions. The issue of 
appropriate scales has been generally described in section 2.3. In this chapter, the effect 
of different spatial and temporal scales (resolutions) on the response of the Meuse basin 
will be studied. The resolutions of interest are those associated with the rainfall input 
and the river basin model itself. 

The effect of the rainfall input resolution on catchment response has been considered in 
several studies, although it is difficult to separate errors associated with rainfall input 
from model errors (Shah et al., 1996a). The effect of the spatial rainfall input resolution 
on the response of small catchments has been investigated using either observed rainfall 
(e.g. Dawdy and Bergmann, 1969; Obled et al., 1994; Lopes, 1996) or stochastic 
rainfall models (e.g. Wilson et al., 1979; Krajewski et al., 1991; Shah et al., 1996a). The 
spatial rainfall variability was found to be of substantial importance. The effect of the 
temporal rainfall input resolution on catchment response has been found to be more 
important than the effect of the spatial resolution (see Krajewski et al., 1991), although 
the former is much less frequently studied. These effects are hardly examined for large 
basins, although the rainfall pattern is known to be potentially important in these large 
basins (Obled et al., 1994). 

The effect of the spatial and temporal catchment model resolution on catchment 
response has been examined by comparing output from models differing in complexity 
(e.g. Loague and Freeze, 1985; Krajewski et al., 1991; Shah et al., 1996a). This way of 
examination not only assesses the effect of different model resolutions, but also 
considers the effect of different parameterisations and processes incorporated. This 
indicates a need to assess the effect of only (coupled) spatial and temporal model 
resolution on catchment response, in particular for large basins, with unchanged 
parameterisations and processes incorporated. 

Therefore, in this chapter the effect of coupled spatial and temporal catchment model 
resolution and spatial and temporal rainfall input resolution on the response of the 
Meuse is assessed using data of the right order of magnitude [see also the studies of 
Wilson et al. (1979) and Krajewski et al. (1991)]. Obviously, the response of particular 
interest is the extreme river discharge. The objective is achieved by developing a simple 
stochastic rainfall model and using the river basin model briefly mentioned in section 
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2.1 with uniform parameters in space and spatially and temporally varying rainfall input 
(section 3.2). Numerical simulation is used here, because of the non-linear nature of the 
rainfall formulation and the future possibility to include non-linear processes in the river 
basin model. Models with varying resolutions are used to assess the resolution effect on 
extreme river discharge. The validity of the results has been examined through a 
sensitivity analysis with the most important parameters of the river basin model (section 
3.3). The results are discussed in section 3.4. They may give some indication on the 
appropriate input and model resolution for a similar river basin with a similar rainfall 
regime. This may give some support when an appropriate model for the determination 
of extreme discharges of a large river basin with climate change has to be chosen. 

3.2 Description and application of models 

3.2.1 Stochastic rainfall model 
Sophisticated stochastic rainfall models have been developed (e.g. Bras and Rodriguez-
Iturbe, 1976; Waymire et al., 1984; Shah et al., 1996b). The simple stochastic rainfall 
model used here is a slightly modified random phase model (Cacko et al., 1988), 
because it incorporates the spatial and temporal correlation of observed precipitation to 
generate spatially and temporally varying rainfall series. This has been done in a similar 
way by for example Bras and Rodriguez-Iturbe (1976). The model assumptions are: 
•  The rainfall process is a stationary one, i.e. its statistics do not change with time. 
•  The rainfall process has a uniform character, i.e. its statistics do not vary in space. 
•  There is correlation in time and space between rainfall amounts. 
•  Time and space correlation are not independent; there is one correlation function 

describing both time and space characteristics. 
This latter assumption makes the difference between the AR(1) model used in section 
2.1 and the random phase model used here. It was considered to be necessary to 
incorporate this additional characteristic into this new rainfall model. However, the 
model is assumed to represent measured rainfall sequences and therefore does not have 
a coupled spatial and temporal resolution unlike the river basin model, i.e. measured 
rainfall can have an hourly or daily time step and can be point (gauge) or areally 
averaged (radar). 

The starting point for the rainfall model formulation is an assumed rainfall correlation 
function ρ  for spatial lag hx, hy (in hundreds of km’s) and temporal lag k (in days) 
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where a1, b1, b2 and b3 are parameters dependent on the observed rainfall in the area of 
interest. This correlation function needs to be transformed to its spectral form as a 
function of frequency ϕ, κ, and ω in order to use it in the random phase model 
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This power spectral density of the rainfall correlation function implemented in the 
random phase model is used to generate spatially and temporally correlated rainfall PC 
[1] at location x, y on time t 
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where ζ is a random variable uniformly distributed in the interval {0,2π}. The 
discretised form of equation (3.3) at location x, y on time t used in the simulation is 
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Here ϕi, κj, ωk are representative frequencies; ∆ϕ, ∆κ, ∆ω are respectively the 
equidistant intervals |ϕi-ϕi-1|, |κj-κj-1|, |ωk-ωk-1|; ϕi’, κj’, ωk’ equal ϕi+∆ϕi, κj+∆κj, 
ωk+∆ωk and ζ i,j,k are independent, random variables uniformly distributed in the interval 
{0,2π}. The ∆ϕi, ∆κj, ∆ωk are small random frequency increments uniformly distributed 
in the intervals {-∆ϕ/2, ∆ϕ/2}, {-∆κ/2, ∆κ/2}, {-∆ω/2, ∆ω/2} introduced to avoid 
periodicity of the simulated process. This Gaussian rainfall field sequence PD has been 
modified to simulate besides a correct spatial and temporal correlation structure 
according to equation (3.1) also a correct mean rainfall and percentage of rainy days 
(when PD (x, y, t) > 0). This modified (non-Gaussian) rainfall PXY [L3T-1] at location x, y 
on time t becomes  
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where the parameters d1 [1] and d2 [L3T-1] are obtained using observed rainfall. The 
discretised form of (3.5) for cell i, j with spatial dimension x∆  on time t with time step 

t∆  is 

(3.6) [ ] [ ] ),12,12(),,( tjxixPtjiP XY −∆−∆=  

The rainfall model is applied to the Meuse basin upstream of Borgharen which has a 
surface area A of about 21 103 km2. Its parameter values have been obtained by means 
of available data. The values for parameters a1, b1 and b2 have been obtained by 
approximating the spatial daily rainfall correlation function from Stol (1972), who 
studied the relationship between spatial correlation of rainfall and distance in the eastern 
part of the Netherlands. The value for b3 has been chosen such that the lag-one-day 
correlation coefficient is properly simulated. A sufficient number ( 5000≈⋅⋅ KJI ) of 
representative combinations of frequencies ϕi, κj, ωk on intervals ϕ∆ , κ∆ , ω∆  have 
been used. The parameter values for d1 and d2 are based on data from Berger (1992). 
Parameter d2 is based on the mean areal precipitation in the Meuse area over the three 
wettest months with a reference period of at least 20 years, because the focus is on 
extreme discharges occurring mainly during these wet months. The parameter values 
were taken from these studies for convenience and are assumed to be adequate taken 
into account the research objective. They are summarised in Table 3.1. Although these 
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parameter values have been determined from daily data, the rainfall model can be used 
at smaller time steps as well due to the continuous temporal correlation function in 
equation (3.1). 

Table 3.1 Estimated parameter values for the rainfall model. 

Parameter Value Parameter Value 
a1 (-) 1.0 d1 (-) -3.0 
b1 (km-2) 4.0 10-1 d2 (m3 s-1) 1.2 102 
b2 (km-2) 4.0 10-1 A (km2) 2.12 104 
b3 (day-2) 1.6   

As an example an observed (from 1994) and generated daily rainfall sequence for an 
arbitrary cell P(i, j, t) scaled with respect to their mean values are shown in Figure 3.1. 
The generated sequence has realistic statistical characteristics with differences between 
observed and simulated mean, percentage of rainy days and spatial and temporal 
correlation of respectively –8 %, 11 %, -17 % and –10 %. This sequence can be used 
here, since the objective was not to model a particular rainfall pattern in detail, but 
rather to simulate an adjustable, realistic process. 
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Figure 3.1 Daily observed rainfall in 1994 (NOAA, 1999) and simulated rainfall for an arbitrary cell 

scaled with respect to their mean values P (-) as a function of day number. 
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3.2.2 River basin model 

Model structure and assumptions 
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Figure 3.2 River basin model with basin cell position expressed in i and j, river cell position (R) 

expressed in j, cell dimensions expressed in x∆  and water balance components illustrated 
for an arbitrary basin and river cell (extension of Figure 2.3). 

The river basin model is briefly described and used in the preliminary model 
appropriateness procedure in section 2.1. A more comprehensive overview will be given 
here. The river basin model has a variable coupled spatial and temporal resolution and 
uniform parameterisations. The model structure for N = 16 catchment cells is illustrated 
in Figure 3.2. This structure can easily be applied to other resolutions (other N’s) as well 
as the water balance components can be defined for other catchment and river cells than 
the example cells in the figure. The model structure shows that each catchment cell in 
strip j receives effective precipitation (PE) and discharges this precipitation to the 
adjacent cell in strip j in the river direction. The catchment cell that borders a river cell 
discharges into this river cell in strip j, from this river cell the water is transported 
further to the river cell in strip j+1 and finally to the outflow point; out of the river cell 
in strip j = √N. The water balance components in Figure 3.2 are the following 

),,( tjiPE  = effective rainfall for catchment cell i, j at time t [L3T-1] 
),,( tjiPE

mC  = ),,(),,( tjiPEtjip
mC  = effective rainfall for reservoir Cm of catchment 

   cell i, j at time t [L3T-1] 
),,( tjip

mC  = part of effective rainfall for reservoir Cm of catchment cell i, j at time t[1] 
),,( tjiQ

mC  = discharge out of reservoir Cm of catchment cell i, j into catchment cell 
  i+1, j at time t [L3T-1] 

),( tjQR  = discharge out of river cell j into river cell j+1 at time t [L3T-1] 

Effective rainfall PE (i, j, t) is only received by catchment cells, so it is assumed that the 
input to the river cells is negligible. It is obtained from equation (3.6) as follows 

(3.7) rctjiPtjiPE ),,(),,( =  



52 Chapter 3 

Runoff coefficient rc is the ratio of observed river basin discharge q(t) and observed 
areal rainfall pA(t). In this way a constant fraction of the rainfall is assumed to be subject 
to loss processes such as evapotranspiration and groundwater leakage. The discharge Q 
[L3T-1] at time t is defined as the output from a linear reservoir with capacity V [L3] on 
time (t-∆t) with lag constant k [T-1] 

(3.8) )∆()( ttVktQ −=  

The number of reservoirs of the catchment cell and the river cell has been determined 
through the existence of characteristic velocities associated with hydrological processes. 
A characteristic velocity vc [LT-1] is derived from the existence of an approximately 
constant ratio between length and time scale of each hydrological process (see Figure 
2.5; Blöschl and Sivapalan, 1995). According to these characteristic velocities, a 
catchment cell can reasonably be divided into three reservoirs and a river cell can 
consist of only one reservoir. The three catchment cell reservoirs represent saturation 
and infiltration excess overland flow (m = 1), subsurface stormflow (m = 2) and 
groundwater flow (m = 3). Each of these reservoirs has its own characteristic velocity 
and reservoir capacity [compare with respectively lag constant k and reservoir capacity 
V in equation (3.8)]. 

These principles will be used to describe the water movement by means of a water 
balance for the catchment cells and the river cells in a dimensionless form in order to 
reduce the number of parameters. After that, the formulation of the initial conditions 
and the water distribution functions ),,( tjip

mC  will follow. Finally, the described model 
will be applied to the Meuse basin. 

Mathematical formulation 
The water balance expressed in water depth h [L] (= V/A) for reservoir Cm of catchment 
cell i, j on time t during time step ∆t becomes 
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where 

 FC = [ ]
N
Ax =∆ 22 = surface area of the catchment cell [L2] 

The left-hand side of (3.9) represents the storage change, the first term on the right-hand 
side is the discharge out of the reservoir, the second term reflects the rainfall input and 
the third term represents input from the same reservoir of the cell upstream of the 
considered catchment cell. The third term does not apply to catchment cell i = 1 and/or i 
= √N/2+1 (see Figure 3.2). Note that )( mCV  from equation (3.8) is equal to 

mCC hF . The 
total discharge from the adjacent catchment cells QC [L3T-1] into a river cell j on time t 
is 
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The water balance expressed in water depth h [L] for the single reservoir R of river cell j 
on time t during time step ∆t becomes 

(3.11) 
tttjhk

t
F

tjQ
ttjhtkttjhtjh

RR

R

C
RRRR

∆∆

∆∆∆∆

),1(

),(
),(),(),(

−−+

+−−=−−
 

where 

 
N
ANxxFR =∆⋅∆= 22  = surface area of the river cell [L2] 

The left-hand side of (3.11) represents the storage change, the first term on the right-
hand side is the discharge out of the reservoir, the second term reflects input from the 
adjacent catchment cells and the third term represents input from the cell upstream of 
the considered river cell. The third term does not apply to cell j = 1 (see Figure 3.2). The 
discharge of reservoir R QR [L3T-1] in river cell j = √N (at the outflow point) on time t 
can be written as 

(3.12) ),(),( ttNhFktNQ RRRR ∆−=  

Equations (3.9), (3.10), (3.11) and (3.12) describing the water movement in a river basin 
are made dimensionless by introducing the following dimensionless variables and 
parameters 
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Here, λ and τ are respectively the spatial correlation length [L] and the temporal 
correlation length [T] of rainfall in the examined catchment area and µ is the mean 
effective rainfall averaged in space and time ),,( tjiPE  [L3T-1] equal to the mean 
discharge at the outflow point averaged in time ),( max tjQR  [L3T-1]. The three 
dimensionless parameters K1 K2 and K3 are defined with respect to reservoir R having 
the largest characteristic velocity vc,R. This largest characteristic velocity and the given 
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spatial dimension ∆x determine the temporal dimension (time step) ∆t, because ∆t = 
∆x/vc,R and thus ∆x’ and ∆t’ are coupled as well. The dimensionless equations become 
respectively 

(3.13) 
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Initial conditions and water distribution functions 
The initial state of the system is assumed to be the equilibrium state, implying uniform 
(independent of i and j) and stationary (independent of t) initial conditions. This means 
that on time t = 0 the total effective rainfall equals the total catchment discharge which 
in turn equals the river discharge at the outflow point 
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This leads with Figure 3.2 and equations (3.14) and (3.16) to 
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The values of the parameters in this equation have been determined, except for the 
initial dimensionless water depths, so that expressions are obtained for these latter 
parameters. The values of the parameters pCm(i, j, 0) and Km are chosen in the 
calibration. The parameter kR’ = 0.5, because the definition of ∆x prescribes that during 
time step ∆t half of the river reservoir R, having the largest characteristic velocity vc,R, is 
discharged to the reservoir R downstream. The initial dimensionless water depth of each 
catchment reservoir in cell i, j = √N/2, j and cell i, j = √N, j and of the river reservoir in 
cell j = √N for a specific N (∆x’ and ∆t’) then becomes 
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The initial dimensionless water depth of each catchment reservoir in cell i, j and of the 
river reservoir in cell j are (see Figure 3.2) 
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The water distribution functions pCm(i, j, t) can be defined with chosen parameters and 
the following assumptions: 
•  The more reservoir C2 and C3 are saturated (expressed in dimensionless water depth) 

the more water will flow into reservoir C1 and C2 respectively. 
•  The varying dimensionless water depth as a result of different N’s and/or a different 

location in the catchment cascade (i) has to be scaled to its original value (on which 
basis the distribution functions are defined) by an appropriate scaling constant. 

•  The sum of pC1(i, j, t), pC2(i, j, t) and pC3(i, j, t) should be equal to 1. 
•  At t = 0 part pCm(i, j, 0) should flow into Cm. 

The distribution functions then become 
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Application to the Meuse basin 
The uniform parameter values for the river basin model have been estimated by using 
one extreme rainfall-runoff sequence for the Meuse basin. It is assumed that this 
sequence is representative for extreme sequences in the Meuse basin in general. 
Although extreme sequences may change due to for example climate change, this 
probably will not seriously influence resolution effects. The sequence used is the daily 
areal rainfall pA-daily Borgharen discharge q series from 10 December 1993 through 10 
January 1994 (Weijers and Vellinga, 1995) as shown in Figure 3.3. The areal rainfall 
has been obtained by arithmetically averaging 20 point rainfall sequences. 
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Figure 3.3 Observed daily areal rainfall (mm day-1), observed daily Borgharen discharge (m3 s-1) and 

simulated 3-hour Borgharen discharge (m3 s-1) as a function of day number. 

In order to reproduce extreme events, the constant runoff coefficient rc has been 
determined from this observed extreme sequence. The parameter µ is equal to the 
observed discharge q averaged over the December-January period. The spatial and 
temporal correlation lengths have been determined using the correlation function of 
equation (3.1) with chosen parameter values. The characteristic velocity of reservoir R 
(river flow) has been taken from Blöschl and Sivapalan (1995). The values of the 
remaining five parameters have been chosen in such a way that the observed sequence is 
simulated in a reasonable way and the values for Km are in the range of values given by 
Blöschl and Sivapalan (1995). This parameter estimation has been done for the river 
basin model with the highest resolution, i.e. smallest coupled ∆x’ and ∆t’. The simulated 
discharge (Q’µ) using the calibrated parameter set and the observed rainfall is shown in 
Figure 3.3 as well. The model efficiency coefficient (Nash and Sutcliffe, 1970) for this 
simulation is around 0.80, which is reasonable. A value of 1 would have implied a 
perfect correspondence between observed and simulated discharge. The parameter 
values are summarised in Table 3.2. 
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Table 3.2 Estimated parameter values for the river basin model. 

Parameter Value Parameter Value 
rc (-) 9.3 10-1 K1 (-) 2.7 10-1 
µ  (m3 s-1) 7.5 102 K2 (-) 2.5 10-2 
λ (km) 1.4 102 K3 (-) 1.0 10-4 
τ (day) 1.0 p1(i, j, 0) (-) 5.0 10-1 
vc,R (m s-1) 1.0 p2(i, j, 0) (-) 4.9 10-1 

3.3 Assessment of resolution effect using the rainfall and river 
basin model 

The rainfall model and the river basin model are used to assess the effect of coupled 
spatial and temporal river basin model resolutions and spatial and temporal rainfall 
input resolutions on extreme river basin discharge. This has been done by simulating the 
discharge with the river basin model using one year of generated rainfall as input and 
varying successively the river basin model and rainfall input resolutions. In the 
following, the spatial (∆x’) and temporal (∆t’) resolution for the river basin model (B) 
and rainfall input (R) are respectively ∆xB’, ∆tB’, ∆xR’ and ∆tR’. 

Different coupled ∆xB’s and ∆tB’s are created keeping in mind the magnitude of the 
surface area A and the method of catchment cell subdivision. Different ∆xR’s are 
obtained by using different numbers of cells from the generated rainfall field as rainfall 
input as illustrated in Figure 3.4. Different ∆tR’s are obtained by summing generated 
rainfall over different time lengths. The values used for these resolutions will be 
determined below. 

 

all cells 0.077 

0.15 

0.31 

0.62 

cells used ∆xR’ 

 
 

Figure 3.4 Characterisation of the spatial rainfall input resolution ∆xR’ by means of the cells used from 
the generated rainfall field as rainfall input. 

The smallest ∆xR’ (resolution of generated rainfall) is the currently available spatial 
resolution in regional climate models (about 20 km, see for example Christensen et al., 
1997), because at this resolution rainfall with climate change directly is available. The 
smallest ∆xB’ has been chosen to be equal to this smallest ∆xR’. Other combinations of 
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∆xB’s and coupled ∆tB’s are obtained by choosing N = 1, 4, 16 and 64. These four 
different spatial and temporal resolutions are used for respectively ∆xR’ and ∆tR’ as well. 
The combinations of these different resolutions simulated are given in Table 3.3. Notice 
in this table that it is not necessary to run the model with ∆tR’<∆tB’, because different 
rainfall amounts within a river basin model time step are simply aggregated. 

Table 3.3 Simulated combinations (X) of river basin model and rainfall input resolution. ∆xB’ and 
∆xR’ has been scaled with λ = 140 km and ∆tB’ and ∆tR’ with τ = 1 day (see Table 3.2). The 
grid point distance is 2∆xB’ or 2∆xR’. 

River basin model resolution  Rainfall input resolution  
Spatial (∆xB’) Temporal (∆tB’) Temporal (∆tR’) Spatial (∆xR’) 
   0.077 0.15 0.31 0.62 
0.077 0.125 0.125 X X X X 
  0.25 X X X X 
  0.5 X X X X 
  1 X X X (C) X 
0.15 0.25 0.25 X X X X 
  0.5 X X X X 
  1 X X X (B) X 
0.31 0.5 0.5 X X X X 
  1 X X X X 

0.62 1 1 X X X (A,C) X 
(A, B):  combinations used in sensitivity analysis 
(C): combinations used in Figure 3.5 

The validity of the results has been examined by assessing the sensitivity of the extreme 
discharge to the five parameters K1, K2, K3, pC1(i,j,0), pC2(i,j,0) of the river basin model. 
This sensitivity analysis implies varying the parameter values one at a time. The most 
important parameters are determined by varying K1, K2 and K3 with ± 50 % of their 
calibrated value and pC1(i,j,0), pC2(i,j,0) with about ± 20 % of their calibrated value for 
combination A in Table 3.3. The effect of these most important parameters on the 
discharge will be investigated in more detail for combination B in Table 3.3. 
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3.4 Results and discussion 
The objectives in this chapter were to assess the effect of coupled spatial and temporal 
river basin model resolution and spatial and temporal rainfall input resolution on 
extreme river basin discharge represented by the maximum discharge and to assess the 
validity of the results through a sensitivity analysis. The results of these assessments 
will successively be considered below. First, an example of two simulated discharge 
sequences is treated. 

These two sequences are the simulated dimensionless discharge Q’ as a function of the 
day number for the lowest and the highest river basin model resolution as shown in 
Figure 3.5 (see combination C in Table 3.3). As expected, the differences between the 
hydrographs are considerable. The variability of Q’(t) simulated with the smallest model 
resolution is much smaller than the variability of Q’(t) simulated with the highest 
resolution (about factor 2 smaller) and the difference between corresponding maximum 
dimensionless discharges is considerable as well. This difference in variability is caused 
by the way water is distributed within the river basin (small time lag vs. large time lag). 
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Figure 3.5 Dimensionless discharge Q’ as a function of day number for lowest (∆xB‘ = 0.62, ∆tB‘ = 1) 

and highest (∆xB‘ = 0.077, ∆tB‘ = 0.125) basin model resolution (C in Table 3.3). 

The effect of the river basin model resolution (∆xB’ and ∆tB’), spatial rainfall input 
resolution (∆xR’) and temporal rainfall input resolution (∆tR’) on the maximum 
dimensionless discharge during the simulation period Q’max is shown in respectively 
Figure 3.6, Figure 3.7 and Figure 3.8 and will be discussed in 3.4.1, 3.4.2 and 3.4.3. The 
overall effect of resolutions and the sensitivity analysis is considered in 3.4.4. 
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3.4.1 Effect of river basin model resolution 
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Figure 3.6 Maximum dimensionless discharge Qmax’ as a function of river basin model resolution 

(expressed in ∆xB’) for four different spatial rainfall input resolutions ∆xR’ and constant 
temporal rainfall input resolution ∆tR’ = 1. 

In Figure 3.6, the effect of ∆xB’ on Q’max is considerable, but almost independent of 
∆xR’. The possibility to draw straight conclusions is restricted in the absence of 
simulated points between ∆xB’ = 0.077 (N = 64) and ∆xB’ = 0.15 (N = 16). However, if 
it is assumed that linear convergence takes place with decreasing ∆xB’ (or N-½), the lines 
in Figure 3.6 can be extrapolated to the ‘exact’ Q’max corresponding with ∆xB’ = 0. This 
exact value is found to be close to the Q’max simulated with the smallest ∆xB’ 
independent of ∆xR’ (difference is only 2-4 %).  

Shah et al. (1996a) also found large differences when approximating SHE (Système 
Hydrologique Europeèn) catchment responses with a simple linear transfer model, 
although they studied a small catchment. Krajewski et al. (1991) underestimated flood 
peaks of a small catchment when using a lumped model instead of a distributed model. 
Obviously, these studies did not only compare different model resolutions, but included 
different model parameterisations as well. Nevertheless, they do not contradict the 
results obtained here. 

Considering this latter finding and the convergence assumption done, the simulations 
performed with ∆xB’ = 0.077 and coupled ∆tB’ = 0.125 look reasonable and of sufficient 
detail for determining extreme discharges. Resolutions remain reasonable when an 
accuracy of 1 % is required, namely ∆xB’ ≈ 0.03 or N ≈ 500 for the Meuse situation. 
Apart from this model resolution, of course other aspects such as the generated rainfall 
sequence, parameter determination and model assumptions have their effect on the 
results. However, the present results give some indication on the appropriate basin 
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model resolution for an area of similar extent using appropriate correlation lengths λ 
and τ and parameter values lying in the vicinity of the calibrated ones. 

3.4.2 Effect of spatial rainfall input resolution 
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Figure 3.7 Maximum dimensionless discharge Qmax’ as a function of spatial rainfall input resolution 

∆xR’ for four different river basin model resolutions ∆xB’, ∆tB’ and constant temporal 
rainfall input resolution ∆tR’ = 1. 

In Figure 3.7, the effect of ∆xR’ on Q’max is seen to be much smaller than the effect of 
∆xB’ on Q’max (Figure 3.6). It seems that it is sufficient to use ∆xR’ = 0.31 (four rainfall 
cells in this situation) for the simulation of extreme discharges, independent of ∆xB’, 
∆tB’ and ∆tR’ (the variation of the latter one is not shown here). This resolution is lower 
than would be expected, given the considerable effect of spatial rainfall resolution on 
catchment response found in several other studies (e.g. Wilson et al., 1979; Lopes, 
1996). However, most of these studies have been performed on relative small 
catchments, where this effect can be essentially different as compared with the effect in 
large catchments. For a large basin in Britain comparable with the Meuse basin, Hamlin 
(1983) found little increase in rainfall representation error until almost 75 % of the rain 
gauges were removed. Assuming the same spatial correlation length of 140 km, this 
corresponds with ∆xR ≈ 0.17 which supports the results obtained here. 

The latter finding leads to the assumption that for this basin, the spatial rainfall 
variability is averaged out before it can influence the discharge at the outflow point. 
This may not be the case in large basins with a different rainfall regime and runoff 
concentration pattern or in relatively small basins. Another explanation for this small 
sensitivity to spatial rainfall input resolution might be the large spatial rainfall 
correlation introduced in the rainfall model. 
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3.4.3 Effect of temporal rainfall input resolution 
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Figure 3.8 Maximum dimensionless discharge Qmax’ as a function of temporal rainfall input resolution 

∆tR’ for four different spatial rainfall input resolutions ∆xR’ and constant river basin model 
resolution ∆xB’ = 0.077, ∆tB’ = 0.125. 

The effect of ∆tR’ on Q’max in Figure 3.8 is even smaller than the effect of ∆xR’ on Q’max 
(Figure 3.7). It seems that it makes almost no difference using ∆tR’ = 1 or ∆tR’ = 0.125 
independent of ∆xR’, ∆xB’ and ∆tB’ (the variation of the latter one is not shown here). 
Therefore, on the basis of these simulations, it should be sufficient to use rainfall input 
with ∆tR’ = 1 or even larger values (not examined here). It is not plausible that smaller 
values than ∆tR’ = 0.125 would lead to significant changes in this relation. 

As mentioned earlier, Krajewski et al. (1991) found for a small catchment that the 
temporal rainfall resolution has a larger effect on catchment response than the spatial 
rainfall resolution. This finding is in contradiction with the results obtained here, but 
again the behaviour of small catchments and large basins might be very different.  

The river basin model resolution effect on the maximum discharge is found to be of 
major importance as compared with the spatial and temporal rainfall input resolution 
effect. Shah et al. (1996a) reached similar conclusions for a small catchment when 
comparing the effect of model complexity and the spatial rainfall resolution on 
catchment response. 
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3.4.4 Sensitivity 
The sensitivity of Q’max scaled with its reference value to the three most important 
parameters scaled with their calibrated values can be viewed in Figure 3.9. 
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Figure 3.9 Scaled maximum dimensionless discharge Qmax (with respect to its median) as a function of 

scaled parameters K1, K2, p1(i,j,0) (with respect to their calibrated values). 

The behaviour of Q’max as a function of the parameters has found to be similar using 
other river basin model resolutions. Q’max is most sensitive to parameters K1 and 
pC1(i,j,0) related to the surface reservoir and somewhat less sensitive to parameter K2 
related to the subsurface flow lag constant. Q’max is hardly sensitive to K3 (not shown) 
since the corresponding reservoir only accounts for a marginal part of the discharge (see 
Table 3.2). Although it is somewhat more sensitive to pC2(i,j,0) (not shown), this 
sensitivity is not very important, maybe due to the delayed response of reservoir 2. The 
most important result of this sensitivity analysis is that Q’max changes only gradually 
with the parameters and no qualitative changes occur. This could be expected from the 
linear nature of the river basin model. 

Therefore, it can be supposed that the relations as observed in Figure 3.6 through Figure 
3.8 would not change significantly using other parameter values. It has to be 
emphasised that the parameters have been varied only one at a time leaving the other 
ones at their calibrated level and that other parameter combinations not examined here 
may lead to qualitative changes of the obtained pictures. The error in Q’max due to 
model resolution effects (numerical error) should preferably be much smaller than the 
error due to parameter estimation (data error). The results gave numerical errors of 
about 2-4 % and data errors up to 40 % (Figure 3.9) and therefore meet reasonably these 
requirements. 
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3.5 Summary and conclusions 
In this chapter some important characteristics of an appropriate river basin model to 
study the effect of climate change on basin response were studied. The features 
examined were the spatial and temporal resolution of the rainfall input and a river basin 
model. The effect of these input and model resolutions on the extreme discharge of the 
Meuse was assessed in order to give some indication on appropriate resolutions. This 
was done with a simple stochastic rainfall model and a river basin model with varying 
resolutions, uniform parameters and multiple rainfall input. 

Main conclusion is that the effect of the model resolution on extreme river discharge is 
of major importance as compared with the effect of the input resolution for the 
examined river basin and model. The highest model resolution (5-10 grid points/ spatial 
correlation length; 7-10 time steps/ temporal correlation length) seems to be appropriate 
in determining the extreme discharge for large river basins with a similar rainfall regime 
and runoff concentration pattern as used here. Furthermore, a relatively low spatial and 
temporal rainfall resolution (1-2 grid points/ spatial correlation length; at most 1 time 
step/ temporal correlation length) was sufficient to represent the rainfall input of a 
model for these large basins. These conclusions will not be significantly affected when 
using other parameter values in the river basin model as shown by the sensitivity 
analysis. 

Of course these conclusions should be handled with caution, because of the simple 
rainfall and river basin model used and the calibration procedure followed. However, 
they give some indication on the appropriate input and model resolution for a similar 
large river basin with a similar rainfall regime and runoff concentration pattern, using 
appropriate correlation lengths and parameter values which are within the considered 
range. This gives some support when an appropriate model for the determination of 
extreme discharges of a large river basin with climate change has to be chosen. 
Moreover, a methodology has been presented to assess the effect of spatial and temporal 
rainfall and basin model resolutions on river basin response. For other purposes, where 
the extreme river discharge at the outflow point is not the only interest, other resolution 
requirements may be obtained. 
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Chapter 4  

Climate data analysis 

4.1 Introduction 
The atmosphere controls the runoff processes in a river basin to an important extent 
through processes such as precipitation, wind and radiation. Precipitation plays an 
important role in the basin water balance and wind and radiation influence temperature 
and evapotranspiration. Obviously, these latter two are important for the water balance 
as well. Climate change will have a serious impact on these processes. It is expected 
that the temperature will rise, the evapotranspiration will increase and the precipitation 
becomes more extreme. These three variables are therefore analysed in this chapter. 

Precipitation, temperature and (potential) evapotranspiration are obtained directly or 
indirectly from measuring stations and climate models and are inputs into the river basin 
model. Therefore, in particular the question of appropriate spatial and temporal scales 
should receive attention, because process formulations are not required for input data. 
These appropriate scales should be assessed for important statistics with respect to a 
specific variable, e.g. variability and extremes for precipitation. The statistic vs. scale 
relations from section 2.3 are used for this purpose. Simultaneously, the uncertainty of 
the dominant variables with climate change is assessed in this climate data analysis. 

In section 4.2, the spatial and temporal characteristics of the observed and modelled 
climate data are described and an explanation of the uncertainty assessment is given. In 
section 4.3, the data are intercompared for the Meuse area and Western Europe for 
current and changed climate conditions. Furthermore, different data scales are 
considered (point, model and appropriate) and an uncertainty assessment for the 
important statistics is done. Finally, in section 4.4 the main conclusions are drawn. 

4.2 Observed and modelled data 

4.2.1 Spatial and temporal characteristics 
Daily precipitation and temperature data from a station network, two re-analysis 
projects (one for temperature), three global climate models (GCMs) and two regional 
climate models (RCMs) are used in this analysis. Only daily potential 
evapotranspiration data from a station network are used. The analysis has been 
performed for current climate conditions (for the current ‘equivalent’ CO2 concentration 
or 1XCO2) and changed climate conditions (twice the current ‘equivalent’ CO2 
concentration or 2XCO2). The changed climate conditions apply for a time period of 
approximately 70 years assuming an increase of 1 % ‘equivalent’ CO2 per year. 
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The precipitation, temperature and evapotranspiration station data are respectively from 
39, 12 and 5 stations in the Meuse basin upstream of Borgharen (about 20 000 km2) in 
Belgium and France for the period 1970-1999. The locations of the precipitation 
stations are shown in Figure 4.1a. The precipitation and temperature station data are 
compared with the accompanying model data in a so-called ‘local analysis’ (small bold 
black box in Figure 4.1a). The model data are mutually compared in the ‘regional 
analysis’ to check the consistency of the local analysis and to obtain a more 
representative spatial picture (large bold black box). 

The re-analysis data are from the NASA-GEOS re-analysis (Schubert et al., 1993) and 
the NCEP-NCAR re-analysis (Kalnay et al., 1996). These re-analyses incorporate land 
surface, ship, rawinsonde, aircraft, satellite and other data. The assimilating atmospheric 
general circulation model is constrained at the lower boundary by the observed sea 
surface temperature and the derived soil moisture. The re-analyses produce a large 
number of variables, for example precipitation. This precipitation is not directly affected 
by observations, so that it is derived solely from the model fields forced by the data 
assimilation to remain close to the atmosphere (Kalnay et al., 1996). Therefore, these 
data can be considered as model data as well. The NASA-GEOS1 re-analysis covers the 
period 1985-1993 with a spatial resolution of approximately 2.0°x2.5° (~200 km over 
Western Europe) and from the NCEP-NCAR re-analysis, data for the period 1970-1999 
with a spatial resolution of approximately 1.9°x1.9° (~170 km) are used. The 30 NASA-
GEOS and 42 NCEP-NCAR grid boxes analysed are shown in Figure 4.1a. Only 
precipitation data are adopted from the NASA-GEOS re-analysis. 

The GCM data are from the Canadian Climate Centre, Hadley Centre and CSIRO 
GCMs; CGCM1, HadCM3 and CSIRO9. The atmospheric component of the CGCM1 
model is a spectral model with triangular truncation at wave number 32 yielding a 
horizontal resolution of approximately 3.7°x3.7° (~340 km) and 10 vertical levels. The 
ocean component has a resolution of approximately 1.8°x1.8° (~160 km) and 29 vertical 
levels. The model uses heat and water flux adjustments obtained from uncoupled ocean 
and atmosphere model runs, followed by an adaptation procedure. A multi-century 
control simulation with the coupled model has been performed by Flato et al. (2000) 
using the present-day CO2 concentration to evaluate the model performance. The 
transient climate change simulation uses an effective greenhouse gas forcing change 
corresponding to that observed from 1850 to the present and a forcing change 
corresponding to an increase of CO2 at a rate of 1 % per year (compound) thereafter 
until 2100 (identical to the IPCC “business as usual” scenario). The direct forcing effect 
of aerosols is also included by increasing the surface albedo. The climate sensitivity of 
CGCM1 is about 3.5 °C (Boer et al., 2000a, 2000b). Precipitation data from the period 
1975-1995 representing current climate conditions and from the period 2080-2100 
representing climate change conditions have been used in this analysis. Temperature 
data from 1970-1999 and 2070-2099 have been used. 

The atmospheric component of HadCM3 is the HadAM3 version of the UK 
Meteorological Office’s unified forecast and climate model with a horizontal resolution 
of 2.5°x3.75° (~270 km) and 19 vertical levels. Major changes over the previous 
version (HadAM2) are a new radiation scheme, an improvement of the convection 
scheme and a new land-surface scheme. The ocean component has a resolution of 
approximately 1.25°x1.25° (~130 km) and 20 vertical levels. The model does not 
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require flux adjustments to be made. A 400 year control simulation with the coupled 
model has been performed to evaluate the model performance. The transient climate 
change simulation HadCM3GGa1 was forced using the historical increase in the 
individual greenhouse gases from 1860-1990 and a forcing change corresponding to an 
increase of CO2 at a rate of 1 % per year (compound) thereafter until 2100. The direct 
forcing effect of aerosols is not included (Gordon et al., 2000). The climate sensitivity 
of HadCM3 is about 3.0 °C (IPCC, 2001). Here, precipitation and temperature data 
from the period 1961-1990 representing current climate conditions and from the period 
2070-2099 representing climate change conditions have been used. 

The atmospheric component of CSIRO9 uses a spectral R21 horizontal grid (3.2°x5.6° 
or ~380 km) and 9 vertical levels. The ocean model has the same horizontal resolution 
and 21 vertical levels. The model uses heat, salinity and wind flux adjustments obtained 
from uncoupled ocean and atmosphere model runs. The 185 year transient climate 
change simulation uses a forcing change corresponding to an increase of CO2 at a rate 
of 0.5 % per year (compound) for the first 100 years and slightly faster thereafter 
(identical to the IPCC “central estimate” scenario). The direct forcing effect of aerosols 
is not included. The climate sensitivity of CSIRO9 is about 2.2 °C (Gordon and 
O'Farrell, 1997; Hirst et al., 1997). Precipitation and temperature data from the period 
1970-1999 representing current climate conditions and from the period 2070-2099 
representing climate change conditions have been used. The 16 CGCM1, 20 HadCM3 
and 15 CSIRO9 grid boxes are shown in Figure 4.1a. 

The RCM data are from the Hadley Centre and Danish Meteorological Institute RCMs; 
HadRM2 and HIRHAM4. The HadRM2 is a limited area version of the Hadley Centre 
GCM with a horizontal resolution of 0.44°x0.44° (~50 km) and 19 vertical levels. Apart 
from this horizontal resolution and some details, the physical and dynamical 
formulations of HadRM2 are identical to those in HadAM2. In a one-way nesting 
technique, HadRM2 is driven at its lateral and lower sea surface boundaries by time 
series of data archived from integrations of HadCM2 (previous version of HadCM3). 
The time series used to drive HadRM2 are one 30-year and one 20-year period 
representing control and perturbed climate [1 % per year increase of CO2 (compound) 
etc.] (Jones et al., 1995; Machenhauer et al., 1998). Precipitation and temperature data 
from the control integration representing late twentieth century conditions (1970-1999) 
and the perturbed integration representing the 2080-2100 climate have been used. The 
difference between perturbed and control climate represents the difference between pre-
industrial and 2080-2100 climate (Johns et al., 1997). 

The HIRHAM4 model combines the adiabatic part of the HIRLAM model (developed 
by the Nordic, Dutch and Irish meteorological services) with the ECHAM4 
(atmospheric GCM from MPI, Hamburg) physical parameterisation package. It has a 
horizontal resolution of 0.51°x0.51° (~55 km) and 19 vertical levels. HIRHAM4 is 
driven at its lateral and lower sea surface boundaries by time series of data archived 
from integrations of ECHAM4/OPYC3, the latter being a ocean model. The time series 
used to drive HIRHAM4 are one approximately 9-year and one approximately 8-year 
period representing control and perturbed climate [1 % per year increase of CO2 
(compound) etc.] (Christensen et al., 1996; Machenhauer et al., 1998). Precipitation and 
temperature data from this 9-year and 8-year period have been used. The 404 HadRM2 
and 308 HIRHAM4 grid boxes are not shown in Figure 4.1a for sake of clarity. 
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Figure 4.1 a) Spatial coverage of precipitation stations and re-analysis and GCM model grid boxes in 

Western and Central Europe with Meuse basin and surroundings analysed (small bold black 
box) and regional area analysed (large bold black box); b) spatial coverage of RCM model 
grid boxes in Meuse basin (bold black box is small box from a). 
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In the local analysis respectively 2 NASA-GEOS1, 3 NCEP-NCAR, 2 CGCM1, 3 
HadCM3, 1 CSIRO9, 11 HadRM2 and 12 HIRHAM4 grid boxes are analysed. The 
HadRM2 and HIRHAM4 grid boxes from the local analysis are shown in Figure 4.1b. 
The temporal coverage of the different data sources is illustrated in Figure 4.2. Also 
shown is the procedure for the determination of the uncertainty in precipitation and 
temperature statistics at the appropriate scale with climate change to be used in 4.2.2. 

 
Figure 4.2 Temporal coverage of station, re-analysis, GCM and RCM data for current and changed 

climate and procedure for the determination of uncertainty in precipitation and temperature 
with climate change at the appropriate scale (1=uncertainty due to upscaling; 2=model 
error; 3=inter-model uncertainty; 4=climate forcing uncertainty; 5=inter-model uncertainty; 
6=uncertainty due to downscaling). 

4.2.2 Derivation of uncertainties 
The uncertainty in precipitation and temperature statistics under climate change 
conditions at the appropriate scale is assessed in several steps (see Figure 4.2). The 
different uncertainty contributions are explained in the figure caption. All numbered 
steps in Figure 4.2 add uncertainty to the final uncertainty. The question is whether all 
partial uncertainties (probably resulting in an overestimation of the uncertainty) or part 
of the partial uncertainties (the most important ones) should be summed. Here, it is 
assumed that uncertainty 2 (model error), 3 and 5 (inter-model uncertainties) and 4 
(climate forcing uncertainty) are the most important uncertainties. Furthermore, it is 
assumed that uncertainties 3 and 5 are comparable and are represented by one overall 
uncertainty equal to their mean. Only errors and uncertainties with respect to the GCMs 
and RCMs will be considered (see discussion at the end of 4.3.3). The uncertainty will 
be expressed by means of the absolute value of the Relative Error (RE) for a specific 
statistic X 

(4.1) 
1

12100
X

XXRE −
⋅=  

where X1 and X2 are statistics from different data sources. 
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4.3 Data intercomparison 
The station data can be considered as point data and are analysed in 4.3.1. Subsequently, 
aggregated station data at the model scale are compared with model data in the local 
analysis in 4.3.2 and model data are intercompared in the regional analysis in 4.3.3. The 
local and regional analysis are repeated for climate change conditions in 4.3.4. The 
appropriate scale data are analysed in 4.3.5 and finally, the uncertainty assessments are 
done in 4.3.6. 

4.3.1 Point statistics for local area and current climate 

Precipitation 
Daily point precipitation statistics defined in section 2.3 [mean µ, standard deviation σ, 
dry/ wet day frequency p0/ p1, υ1 and υ2 from equation (2.20), spatial and temporal 
correlation length λ and τ and PPCC* values] for the 39 stations are summarised by 
their respective means and range (minimum and maximum) in Table 4.1. For the wet 
day frequency analysis, the relation between 1/u(h) and h for all stations is shown in 
Figure 4.3. 

Table 4.1 Daily point precipitation statistics. 

Statistics Mean Minimum Maximum
(mm) 2.6 2.1 3.4

(mm) 5.0 4.3 6.3

p 0 (-) 0.49 0.40 0.59

p 1 (-) 0.51 0.41 0.60

(-) 0.79 0.69 0.86

(km) 596 435 785

PPCC* dry-wet (-) 0.78 0.60 0.89

λ (km) 314 245 387

τ (day) 2.3 1.9 3.0

PPCC* spatial (-) 0.96 0.80 0.99

PPCC* temporal (-) 0.98 0.95 1.00

µ
σ

υ1
υ2

 

Differences between stations in mean precipitation can amount to more than 50 % 
within the relative small study area (largest separation distance between stations ~270 
km). The spatial variability in dry and wet day frequencies is evident from Table 4.1 as 
well. The PPCC* values indicating the goodness-of-fit of relation (2.20) in describing 
the relation between distance and the variable in equation (2.19) are reasonable (see 
Figure 4.3). Given the fact that Osborn and Hulme (1997) applied this methodology for 
Western Europe as well, it seems reasonable to apply the methodology here. Similar 
reasoning applies for the spatial and temporal behaviour of the correlograms (PPCC* 
values are considerable larger). The mean spatial correlation length λ of about 300 km 
compares favourable with the winter and summer values of 300 km and 200 km found 
by Osborn and Hulme (1997). The mean temporal correlation length τ of about 2.3 days 
is rather large when compared with the value of about 1.5 days found by Hoosbeek 
(1998) for a Dutch area. This may be caused by the small number of points used in the 
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fitting procedure (6 points) and/ or the small number of stations used by Hoosbeek in 
his analysis. Differences in precipitation regimes between the two neighbouring areas 
are not expected to be an explanation, because temporal correlation is assumed to be 
associated with large scale weather patterns. 
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Figure 4.3 Relation 1/u vs. distance (= h) for all stations. 
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Figure 4.4 Mean (left) and minimum-maximum (dotted line, right) of precipitation return values RV in 

mm/day with 95%-confidence intervals derived from 39 stations. 

Precipitation return values RV(T) and their 95%-confidence intervals for T=10, 20 50 
and 100 years for the 39 stations are summarised by their respective means and range 
(minimum-maximum) in Figure 4.4. The 95%-confidence intervals and the spatial 
variability of return values are rather large. The ratio of the maximum RV100 (top of 
dotted line in Figure 4.4) and minimum RV100 (bottom of dotted line) is more than 2. 
This large spatial variability can be largely attributed to the point quantity measured and 
the inherent coincidence of catching a small or large precipitation amount [sampling 
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problem, statistical cause] and to a lesser extent to the effect of distance to the sea 
(moderate correlation) and orography (weak correlation) [physical cause]. García-Ruiz 
et al. (2000) found a somewhat stronger, but still weak correlation between the 
maximum observed daily precipitation and the altitude for the Spanish Pyrenees for 26 
stations. 
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Figure 4.5 Spatial correlation length in km for each annual maximum precipitation field for 1970-

1999. 

The spatial correlation length λ for each annual maximum precipitation field (see 2.3.5) 
for 1970-1999 is shown in Figure 4.5. The λ’s for 1975, 1983 and 1999 are not shown, 
because no reasonable variograms could be fitted to the calculated semi-variances for 
these particular years. The average λ is about 80 km with a standard deviation of 17 km. 
This value is remarkably smaller than the value derived from complete precipitation 
fields of about 300 km. It is therefore necessary to use correlation lengths associated 
with extreme precipitation fields in the reduction methodology of section 2.3.5 instead 
of using correlation lengths associated with complete precipitation fields as has been 
done by Sivapalan and Blöschl (1998). 
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Figure 4.6 Worst (a) and best (b) goodness-of-fit for exponentially distributed point values. 
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Figure 4.7 Worst (a) and best (b) goodness-of-fit for Gumbel distributed annual maximum point 

values. 

In the same extreme value reduction methodology, it is assumed that non-zero daily 
point precipitation values are exponentially distributed and annual maximum daily point 
precipitation values are Gumbel distributed. The worst and best goodness-of-fit of non-
zero daily point precipitation to the exponential distribution for two specific stations are 
shown in Figure 4.6. The worst and best goodness-of-fit with respect to the Gumbel 
distribution are shown in Figure 4.7. The PPCC test failed to reject the hypothesis of 
annual extremes being Gumbel distributed at a significance level of α = 0.05 for 36 
stations (or 92 %). The differences between calculated and critical PPCC values for the 
exponential distribution were very small. The most pronounced deviations from 
linearity in the probability plots in Figure 4.6 are associated with extreme values, which 
were fitted to the Gumbel distribution to an acceptable level (see Figure 4.7). It can 
therefore be concluded that non-zero and annual maximum daily point precipitation 
values are respectively exponentially and Gumbel distributed. 

Temperature 

Table 4.2 Daily point temperature statistics. 

Statistics Mean Minimum Maximum
(°C) 8.9 7.4 10.9

(°C) 6.5 6.4 6.9

λ (km) 5272 3435 7864

τ (day) 76.2 74.8 77.5

µ
σ

 

Daily point temperature statistics (mean µ, standard deviation σ and spatial and 
temporal correlation λ and τ) for 12 stations are summarised by their respective mean 
and range (minimum and maximum) in Table 4.2. The average spatial correlation length 
λ is large in comparison with the area (extent) examined and is even underestimated 
according to scale (extent) vs. correlation length relationships (Western and Blöschl, 
1999). The large temporal correlation length τ could be expected from the annual 
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temperature cycle present in this area. The spatial variability of the four statistics is 
small, partly due to the small number of stations used and the small separation distances 
(up to 150 km) in relation to λ. 

Evapotranspiration 

Table 4.3 Daily point potential evapotranspiration statistics. 

Statistics Mean Minimum Maximum
(mm) 1.8 1.7 1.9

(mm) 1.7 1.5 1.9

 λ (km) 1051 854 1208

 τ (day) 79.9 77.1 81.3

µ
σ

 

Daily point potential evapotranspiration statistics (mean µ, standard deviation σ and 
spatial and temporal correlation λ and τ) for the 5 stations are summarised by their 
respective mean and range (minimum and maximum) in Table 4.3. The coefficient of 
variation CV (σ/µ) is around 1, which is smaller than the CV for point precipitation of 
around 2 indicating that there is more variability in the precipitation process than in the 
evapotranspiration process. The average spatial correlation length λ is again large (1/5 
of the λ for temperature) and the temporal correlation length is comparable with the one 
for temperature. This latter feature could be expected, because of the strong relationship 
between temperature and evapotranspiration (see below). Again, the spatial variability 
of the statistics is small. 

Precipitation, temperature and evapotranspiration 
The relations between daily precipitation, temperature and evapotranspiration are briefly 
investigated to get some idea about their interdepencies. It may be that two of them are 
related in such a way, that it has to be taken into account in the climate simulation 
process or that one variable can be predicted by another variable (e.g. 
evapotranspiration under climate change conditions). Figure 4.8 gives the relations 
between areally average precipitation, temperature and evapotranspiration. Figures a), c) 
and e) give the relationships for actual values and figures b), d) and f) give the 
relationships for deviations with respect to daily normal values (for temperature and 
evapotranspiration). The daily normal values µi

* (i = 1,2,…,365) have been obtained by 
smoothing the computed average daily values µi (i = 1,2,…,365) using Fourier sums to 
filter out small fluctuations. A nice fit was already obtained using 4 periodical functions 
in the smoothing procedure. The deviations can give additional information because of 
the strong periodical structure of temperature and evapotranspiration in contrast to 
precipitation (for the Meuse area). 
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Figure 4.8 Relations between a) precipitation in mm/day and temperature in °C; b) precipitation and 

deviations in temperature in °C; c) precipitation and evapotranspiration in mm/day; d) 
precipitation and deviations in evapotranspiration in mm/day; e) temperature and 
evapotranspiration; f) deviations in temperature and deviations in evapotranspiration. 

Figure 4.8 shows none to weak correlations for all relations with precipitation and only 
reveals for the temperature vs. evapotranspiration relation in e) a reasonable correlation 
(correlation coefficient ≈ 0.62). The precipitation vs. deviations in temperature and 
evapotranspiration relations do not show a significant better correlation than the 
corresponding ‘normal’ ones, the ‘normal’ relation for temperature vs. 
evapotranspiration was even better than the ‘deviated’ one. It can be concluded that only 
a relation between temperature and evapotranspiration exists and some kind of relation 
between these two variables can be used in the climate change simulations. 
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4.3.2 Model scale statistics for local area and current climate 

Precipitation 
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Figure 4.9 Average precipitation in mm/day for different models (1-3 grid boxes) and corresponding 

averaged station values. The numbers refer to the grid boxes used: (1) = 50.00N, 5.00E; (2) 
= 48.00N, 5.00E; (3) = 50.48N, 3.75E; (4) = 50.48N, 5.63E; (5) = 48.57N, 5.63E; (6) = 
50.10N, 3.75E; (7) = 50.10N, 7.50E; (8) = 50.00N, 3.75E; (9) = 50.00N, 7.50E; (10) = 
47.50N, 7.50E; (11) = 49.38N, 5.63E. For HadRM2 and HIRHAM4 average values over 11 
respectively 12 grid boxes are given. Results for current (1X) and changed (2X) climate are 
shown.  

Model scale precipitation for the station series averaged over the corresponding model 
grid boxes (see Figure 4.1) and modelled series for the grid boxes in the Meuse area are 
given in Figure 4.9. They correspond to a variable degree with each other [average RE ≈ 
20 %, equation (4.1)]. Re-analyses underestimate the average precipitation, while 
GCMs generally overestimate the average precipitation. The overestimation by CGCM1 
is in accordance with its overestimation in a study for Canada (Kharin and Zwiers, 
2000). While for the re-analyses and GCMs only a few grid cells are analysed, for the 
RCMs 11 and 12 (HadRM2 resp. HIRHAM4) grid cells are considered. The average 
precipitation is overestimated by both HadRM2 (average RE ≈ 23 %) and HIRHAM4 
(average RE ≈ 34 %). Differences between observed and GCM modelled average 
precipitation are comparable with results for Europe in Déqué and Piedelievre (1995) 
[30-40 % overestimation using a variable resolution GCM], Marinucci et al. (1995) [10-
60 % underestimation with ECHAM3 GCM for Alpine region], Gregory and Mitchell 
(1995) [50 % underestimation to 50 % overestimation with HadCM1], Jones et al. 
(1995) [10 % underestimation with HadCM2] and Marinucci and Giorgi (1992) [5 % 
underestimation with NCAR CCM]. For the United States, Kalnay et al. (1996) found 
large differences between station precipitation and NCEP-NCAR re-analysed 
precipitation (sometimes almost 100 %). The differences between observed and RCM 
modelled precipitation were comparable in other studies for Europe, for example 
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Marinucci et al. (1995) [30 % underestimation – 30 % overestimation with NCAR/PSU 
MM4 for the Alpine region], Jones et al. (1995) [10-20 % underestimation with 
HadRM2] and Marinucci and Giorgi (1992) [30 % underestimation with NCAR/PSU 
MM4]. 
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Figure 4.10 Standard deviation of precipitation in mm/day for different models (1-3 grid boxes) and 

corresponding averaged and reduced station values. The numbers refer to the grid boxes 
used and are defined in Figure 4.9. For HadRM2 and HIRHAM4 average values over 11 
respectively 12 grid boxes are given. Results for current (1X) and changed (2X) climate are 
shown. 

Figure 4.10 presents the standard deviation of precipitation for the averaged station 
series, for the averaged station series calculated by means of the reduction factor 
(reduced) and for the modelled series for the grid boxes in the Meuse area. Averaged 
and reduced standard deviations compare favourably, in particular if there is a large 
numbers of stations in a specific grid cell. It therefore seems to be reasonable to use the 
reduction methodology associated with the standard deviation. Observed and modelled 
standard deviations are comparable (average RE ≈ 25 %), although there are 
considerable differences in the re-analysis projects (viz. RE for CGCM1, HadCM3 and 
CSIRO9 respectively ~5 %, ~15 % and ~10 %; RCMs ~10 %). On the other hand, 
Kalnay et al. (1996) found for the United States that observed and NCEP-NCAR re-
analysed standard deviation compare quite well. Osborn and Hulme (1998), in an 
intercomparison of 12 GCMs, mainly found overestimations of the daily standard 
deviation for Europe (RE varying between 5-60 %). They found that HadCM2 best 
simulated daily standard deviation. CSIRO9, CCC (variant of CGCM1) and the 
Australian BRMC were acceptable as well. Three, partly more recent versions, of these 
models have been analysed here. 
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Figure 4.11 Wet day frequency for different models (1-3 grid boxes) and corresponding averaged and 

reduced station values. The numbers refer to the grid boxes used and are defined in Figure 
4.9. For HadRM2 and HIRHAM4 average values over 11 respectively 12 grid boxes are 
given. Results for current (1X) and changed (2X) climate are shown. 

Wet day frequencies for the averaged station series, the reduced station series and the 
modelled series for the grid boxes in the Meuse area are given in Figure 4.11. The 
reduced wet day frequencies tend to be significantly larger than the averaged ones. This 
is in contrast with the results from Osborn and Hulme (1997), who found good 
agreement between the two methodologies. Since the overall υ  from equation (2.20) 
(~0.71) agrees well with the overall υ  found by Osborn and Hulme, the cause may 
either be inaccurate determination of coefficients β1 and β2 (not plausible, see notes in 
section 2.3.3) or wrong estimation of dry and wet day frequencies by the averaging 
methodology. This latter reason could be explained by the fact that for large grid boxes 
only part of the grid box is covered by stations (Figure 4.1) and therefore averaging 
does not cover the complete grid box. This results in an underestimation of the wet day 
frequency when station values are averaged. It would therefore seem to be necessary to 
use the reduction methodology associated with wet day frequencies. 

Dry and wet day frequencies are not modelled very well. Wet day frequencies tend to be 
overestimated by all models (RE ~10-25 %) except NCEP-NCAR and vice versa for dry 
day frequencies (RE ~30-70 % ). Differences between reduced station and modelled 
frequencies are smaller than differences between averaged station and modelled 
frequencies, again suggesting that reduced values may be preferred over averaged 
values. For the Alpine region, Marinucci et al. (1995) simulated a too wet climate as 
well with the ECHAM3 GCM. Osborn and Hulme (1998) also found too many wet days 
(in particular in winter) for 12 GCMs in Europe when using their reduction 
methodology. 
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The spatial correlation behaviour is hard to evaluate, because only a few grid boxes of 
each model are analysed for the re-analyses and GCMs. At first sight, no striking 
differences appeared from the data. The RCMs somewhat overestimate spatial 
correlation lengths (RE ~15-20 %). The temporal correlation lengths are overestimated 
by all models except CGCM1 and the RCMs (average RE ≈ 35 %). Spatial and temporal 
correlation behaviour is further considered in the regional analysis in 4.3.3 
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Figure 4.12 Precipitation 20-year return values RV(20) with 95%-confidence intervals in mm/day for 

different models (1-3 grid boxes) and corresponding averaged and reduced station values. 
The numbers refer to the grid boxes used and are defined in Figure 4.9. For HadRM2 and 
HIRHAM4 average values over 11 respectively 12 grid boxes are given. Results for current 
(1X) and changed (2X) climate are shown. 

Precipitation 20-year return values RV(20) with 95%-confidence intervals for the 
averaged station series, the reduced station series and the modelled series for the grid 
boxes in the Meuse area are given in Figure 4.12. Differences between model scale 
return values calculated from average station series and reduced station return values are 
small only for the RCMs, which have the highest spatial resolution. Differences 
between return values calculated by the two methods seems to be larger for larger grid 
box areas. This can be explained by the fact that for large grid boxes only part of the 
box is covered by stations and therefore averaging over the complete grid box is not 
achieved. Here, this results in an overestimation of the extreme values by averaging 
station values and therefore the reduction methodology should be used. 

Return values are simulated very well by HIRHAM4 (~ 10 % underestimation) and by 
CSIRO9 and HadRM2 (difference negligible). They are underestimated by the re-
analyses (NASA-GEOS1 ~25 % and NCEP-NCAR ~20 %) and overestimated by 
CGCM1 (~75 %) and HadCM3 (~20%). In particular, CGCM1 performs quite poorly, 
which would not be concluded when looking at averaged station values alone. In that 
case CGCM1 would come out as the best model for simulating extreme precipitation. It 
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is not possible to compare the results for CGCM1 with the results of Kharin and Zwiers 
(2000), because of the reduced observed values used here. Kharin and Zwiers attributed 
the underestimation of in particular the re-analyses to the point vs. grid box effect, but 
this effect has been corrected for in this study. As mentioned in section 4.2.1, re-
analysis precipitation values are not directly affected by observations and therefore 
large differences can be expected. This was observed for other statistics as well (mean, 
standard deviation). Katz (1999) mentioned that applications of extreme value theory to 
GCM output are rare with Zwiers and Kharin (1998) and Kharin and Zwiers (2000) 
apparently being the first to do so. Therefore, no other comparative material can be 
taken into consideration. 

In the extreme value reduction methodology it is assumed that non-zero daily averaged 
precipitation values are gamma distributed and annual maximum daily averaged 
precipitation values are Gumbel distributed. The PPCC test failed to reject the 
hypothesis of annual extreme averaged station values being Gumbel distributed and 
partly failed to reject the hypothesis for the modelled values. Differences between 
calculated and critical (α = 0.05) PPCC values for the gamma distribution for the 
averaged station and modelled values in the Meuse area are quite small. Similar 
arguments as discussed in 4.3.1 for the exponential distribution applies to the gamma 
distributed averaged values. It may therefore be reasonable to assume this distribution 
and the Gumbel distribution for respectively non-zero and annual maximum daily 
averaged precipitation values. 
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Figure 4.13 Average temperature (middle point) and standard deviation of temperature in °C for 

different models in the local analysis. The horizontal lines give the average and standard 
deviation of the station temperature. Results for current (1X) and changed (2X) climate are 
shown. 

The average and standard deviation of the temperature for the averaged station and 
modelled series for grid boxes in the Meuse area are given in Figure 4.13. The average 
temperature is well simulated by HadCM3 (difference = dT < 0.1 °C), moderately by 
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NCEP-NCAR, HadRM2 and HIRHAM 4 (0.1 °C < dT < 1 °C) and poorly by CGCM1 
and CSIRO9 (dT > 1 °C). These differences are small compared with GCM results for 
Europe in Marinucci et al. (1995) [1.3 °C overestimation with ECHAM3 GCM for 
Alpine region], Jones et al. (1995) [1.3 °C underestimation with HadCM2], Marinucci 
and Giorgi (1992) [1.2 °C underestimation with NCAR CCM], Kittel et al. (1998) [0.5-
6 °C biases with nine different GCMs for Northern Europe] and Giorgi and Francisco 
(2000) [about 1 °C bias for different experiments with HadCM2 for Northern Europe]. 
RCM results for Europe are similar to these GCM results [e.g. 1.4 °C underestimation in 
Marinucci et al. (1995) with NCAR/PSU MM4 for Alpine region]. 

The temperature variability is well simulated by HadRM2 (dT in daily standard 
deviation < 0.1 °C), moderately by HadCM3, CSIRO9 and HIRHAM 4 (0.1 °C < dT < 
0.5 °C) and poorly by NCEP-NCAR and CGCM1 (dT > 0.5 °C). Mearns et al. (1995) 
mainly found underestimations of daily temperature variability when simulating with 
the RegCM RCM over the United States. Giorgi and Francisco (2000) found large 
biases (0.5 °C < dT < 1 °C) in the interannual standard deviation for different 
experiments with HadCM2 for Northern Europe. Bell et al. (2000) generally found 
overestimations of the interannual standard deviation when comparing results from 16 
GCMs over land. Overall, it was found from the comparison presented here that 
HadCM3 and the regional models simulate daily temperature behaviour quite well and 
in particular CGCM1 poorly reproduces this behaviour. The spatial and temporal 
correlation behaviour is discussed in the regional analysis. 

4.3.3 Model scale statistics for regional area and current climate 
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Figure 4.14 Average precipitation in mm/day in the regional analysis for NASA-GEOS1 (30 grid 

boxes), NCEP-NCAR (42), CGCM1 (16), HadCM3 (20), CSIRO9 (15), HadRM2 (404) 
and HIRHAM4 (308). Mean (middle point), minimum and maximum of the grid boxes are 
given. Results for current (1X) and changed (2X) climate are shown. 
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Average precipitation for the two re-analysis projects, three GCMs and two RCMs is 
summarised in Figure 4.14 by the mean, minimum and maximum of the grid boxes (in 
the large black box in Figure 4.1). The two re-analysis projects underestimate average 
precipitation compared to the GCMs (~0.5-1.0 mm/day or RE ~20-40 %), while the 
RCMs overestimate average precipitation (RE ~20-30 %) compared to the GCMs. 
Furthermore, when including the results from the local analysis (sub-section 4.3.2) and 
assuming that the station values are representative for the regional area, the conclusion 
seems to be justified that the GCMs and RCMs simulate average precipitation in a more 
acceptable way than the re-analysis projects. However, we should keep in mind the 
differences found in 4.3.2. The spatial variability of average precipitation is somewhat 
higher than that for stations, which is not surprising in view of the much larger area 
studied. Jones et al. (1995) found with the HadCM2 GCM for Europe a mean pattern 
correlation coefficient between observations and simulations of 0.85 implying 
reasonable simulation of the spatial variability (with monthly values). 
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Figure 4.15 Standard deviation of precipitation in mm/day in the regional analysis for NASA-GEOS1, 

NCEP-NCAR, CGCM1, HadCM3, CSIRO9, HadRM2 and HIRHAM4. Mean (middle 
point), minimum and maximum of the grid boxes are given. Results for current (1X) and 
changed (2X) climate are shown. 

The standard deviation of precipitation for the two re-analysis projects, three GCMs and 
two RCMs is summarised in Figure 4.15 by the mean, minimum and maximum of the 
grid boxes. Similar results as for the average have been obtained for the standard 
deviation of precipitation. The regional comparison largely confirmed the results from 
the local analysis. In particular, NASA-GEOS-1 underestimates the standard deviation. 
The differences between models can amount up to RE = 50 %, which is in the same 
range as the differences found by Osborn and Hulme (1998) for a slightly larger 
European region. 
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Figure 4.16 Wet day frequency in the regional analysis for NASA-GEOS1, NCEP-NCAR, CGCM1, 

HadCM3, CSIRO9, HadRM2 and HIRHAM4. Mean (middle point), minimum and 
maximum of the grid boxes are given. Results for current (1X) and changed (2X) climate 
are shown. 

The wet day frequency for the two re-analysis projects, three GCMs and two RCMs is 
summarised in Figure 4.16 by the mean, minimum and maximum of the grid boxes. As 
in the local analysis, it seems that all models except NCEP-NCAR estimate a too wet 
climate (drizzly climate). Wet day frequencies tend to be overestimated and vice versa 
for dry day frequencies. However, this drizzling effect often is exaggerated, because of 
the direct comparison of station and GCM values. 
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Figure 4.17 Spatial correlation length in km in the regional analysis for NASA-GEOS1, NCEP-NCAR, 

CGCM1, HadCM3, CSIRO9, HadRM2 and HIRHAM4. The dotted line gives the average 
station spatial correlation length. Results for current (1X) and changed (2X) climate are 
shown. 
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Figure 4.18 Temporal correlation length in days in the regional analysis for NASA-GEOS1, NCEP-

NCAR, CGCM1, HadCM3, CSIRO9, HadRM2 and HIRHAM4. The dotted line gives the 
average station temporal correlation length. Results for current (1X) and changed (2X) 
climate are shown. 

The spatial and temporal correlation length for precipitation for the two re-analysis 
projects, three GCMs and two RCMs are summarised by their means in Figure 4.17 and 
Figure 4.18. Differences between mean correlation lengths can be substantial. These can 
amount up to more than 100 km for the spatial correlation length and almost 2 days for 
the temporal correlation length. Remarkably, the modelled spatial correlation lengths 
compare favourable with the observed ones as opposed to the differences found for the 
temporal correlation lengths. The temporal correlation lengths estimated from the 
RCMs compare favourable with the value found by Hoosbeek (1998), but are less than 
those observed for the Meuse area. They deviate considerably from the temporal 
correlation lengths estimated by the other models, which can be partly explained by the 
larger variability in the RCMs (30-100 %) due to scale differences. 
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Figure 4.19 Mean of precipitation return values RV with 95%-confidence intervals in mm/day in the 

regional analysis for NASA-GEOS1, NCEP-NCAR, CGCM1, HadCM3, CSIRO9, 
HadRM2 and HIRHAM4. Results for current (1X) and changed (2X) climate are shown. 
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Precipitation return values RV(T) for T=10, 20 50 and 100 years with 95%-confidence 
intervals for the two re-analysis projects, three GCMs and two RCMs are summarised 
by their means in Figure 4.19. Similar conclusions as in section 4.3.2 apply to this 
regional comparison assuming station values are representative. The return values of 
NASA-GEOS1, NCEP-NCAR, HadCM3 and CSIRO9 are comparable and those of 
CGCM1 and the RCMs are about 40-60 % higher. The 95%-confidence intervals of 
these former four models fall completely or almost completely outside the 95%-
confidence intervals of the latter three models. It should be kept in mind that spatial 
resolutions of the RCMs are much higher and therefore RCM extreme values ‘upscaled’ 
to re-analysis and GCM scale are more comparable to re-analysis and GCM extreme 
values, as has been found in the local analysis. Kharin and Zwiers (2000) found a global 
average RV(20) for CGCM1 which was 15 mm/day higher than the corresponding value 
in the ECMWF re-analysis (Gibson et al., 1997). This difference is comparable to the 
difference found here. 

Overall, it seems that the re-analysis data are not well suited to validate GCM and RCM 
model precipitation given the differences with average station data for this particular 
area. Only with respect to the dry-wet day frequencies one re-analysis project (NCEP-
NCAR) performed significantly better than the GCMs and RCMs. Re-analysis 
precipitation is solely derived from model fields and in fact is a modelled value as well. 
Insufficient spin-up in the re-analyses and the role of soil moisture are responsible for 
these shortcomings (Van den Dool, pers. comm.). Soil moisture determines evaporation 
and thus air humidity and precipitation. On the other hand, precipitation is an important 
parameter in determining soil moisture and thus if precipitation is wrong, soil moisture 
is wrong, precipitation is wrong etc. The necessity of re-analysis data is therefore 
questioned and for the time being, without contrasting data or literature, use of re-
analysis precipitation data is not recommended (note that for areas for which station 
data availability is scarce one has to use re-analysis data). 
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Figure 4.20 Worst (a) and best (b) goodness-of-fit for gamma distributed areally mean values. 
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Figure 4.21 Worst (a) and best (b) goodness-of-fit for Gumbel distributed annual maximum areally 

mean values. 

Again, differences between calculated and critical (α = 0.05) PPCC values for the 
gamma distribution are very small. The failure rates with respect to rejection for the 
annual extreme values being Gumbel distributed varied for the different models and re-
analysis projects between 81 % and 100 %. The worst and best goodness-of-fit for the 
gamma and Gumbel distribution are shown in respectively Figure 4.20 and Figure 4.21. 
With similar reasoning as in 4.3.1 and 4.3.2, it is assumed that non-zero and annual 
maximum daily averaged precipitation values are respectively gamma and Gumbel 
distributed. 
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Figure 4.22 Average temperature (middle point) and standard deviation of temperature in °C for NCEP-

NCAR, CGCM1, HadCM3, CSIRO9, HadRM2 and HIRHAM4 in regional analysis. 
Results for current (1X) and changed (2X) climate are shown. 
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The average and standard deviation of the temperature for the modelled series for the 
regional analysis are given in Figure 4.22. There is a considerable difference between 
the average temperature simulated by CGCM1 and CSIRO9 and the other models (2-4 
°C), as already observed in the local analysis. The underestimation of the temperature 
variability by CGCM1 in the local analysis is confirmed in the regional analysis. 
Furthermore, it seems that CSIRO9 and HIRHAM4 underestimate temperature 
variability as well. 
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Figure 4.23 Spatial correlation length in km in the regional analysis for NCEP-NCAR, CGCM1, 

HadCM3, CSIRO9, HadRM2 and HIRHAM4. The dotted line gives the average station 
spatial correlation length. Results for current (1X) and changed (2X) climate are shown. 
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Figure 4.24 Temporal correlation length in days in the regional analysis for NCEP-NCAR, CGCM1, 

HadCM3, CSIRO9, HadRM2 and HIRHAM4. The dotted line gives the average station 
temporal correlation length. Results for current (1X) and changed (2X) climate are shown. 
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The spatial and temporal correlation length for temperature for the re-analysis project, 
three GCMs and two RCMs are summarised by their means in Figure 4.23 and Figure 
4.24. The spatial correlation lengths are somewhat underestimated by NCEP-NCAR, 
CGCM1 and CSIRO9 and considerably underestimated by the other three models (> 20 
%) in the local analysis (not shown here). Results from the regional analysis in Figure 
4.23 suggest that CGCM1 and CSIRO9 overestimate spatial correlation lengths (more 
than 40 %) and the other models perform quite well (< 20 %) assuming the station 
values are representative for the regional area. Combining the results from these two 
analyses, it seems that NCEP-NCAR simulates spatial temperature behaviour most 
acceptable. The temporal correlation lengths are well simulated by the re-analysis and 
GCMs and rather underestimated (15-30 %) by the RCMs in the local and regional 
analysis. This underestimation by the RCMs would not be expected given the 
reasonable simulation of the daily temperature variability. Probably, the variability on 
larger time scales (weekly, monthly) is overestimated by the RCMs and therefore 
temporal correlation lengths are underestimated. 

4.3.4 Model scale statistics for changed climate 
Precipitation and temperature statistics of the three GCMs and two RCMs for the local 
analysis and climate change conditions are given in the figures in 4.3.2. Statistics for the 
regional analysis and climate change conditions are given in 4.3.3. Most striking 
features will be successively discussed for the local and regional analysis for 
precipitation and temperature. 

Precipitation 
Average precipitation values do not show significant changes in Figure 4.9 (~5 %), 
while Whetton et al. (1993) and Jones et al. (1997) showed respectively with the 
CSIRO9 GCM for the globe and HadCM2 for Europe average increases of about 10 % 
and Giorgi et al. (1992) simulated with NCAR CCM for Western Europe increases of 
about 15 %. The standard deviation of precipitation for grid boxes in the Meuse area 
increases in all models under climate change conditions by about 10-20 % in Figure 
4.10. Return values increase for 5 out of 6 GCM grid boxes in the Meuse area by 5-15 
% (Figure 4.12). The RCMs simulated an average increase in return values of 25 % 
(HadRM2) and even 60 % (HIRHAM4). Kharin and Zwiers (2000) obtained with 
CGCM1 a global mean increase in return values of about 15 %, but found for the 
European region an increase less than 10 %. The models gave different results with 
respect to the dry and wet day frequencies (Figure 4.11). These frequencies remain 
more or less unchanged in CGCM1 and CSIRO9, while the results show a trend towards 
more dryness (30-40 % more dry days) in HadCM3 and the RCMs. Temporal 
correlation lengths increase for HadCM3 and CGCM1, in one grid box of CGCM1 with 
more than 80 %. The spatial variability of the average and the standard deviation 
remains unchanged, while it slightly decreases for return values (2-10 %) and slightly 
increases for dry and wet day frequencies and temporal correlation lengths. Although 
the increased correlation lengths suggest less spatial variability, this may not hold for 
the spatial variability of summary statistics like the average and the standard deviation. 
Return values are more directly related to the underlying daily values and therefore 
show some decrease in spatial variability. 
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In the regional analysis, the results from the local analysis are confirmed to a large 
extent, although increases of return values for in particular HIRHAM4 are less extreme 
(Figure 4.19). There is a difference in mean increase of return values between CGCM1 
(~8 %), HadCM3 (~15 %), CSIRO9 (~25 %), HadRM2 (~19 %) and HIRHAM4 (~27 
%). This means an average increase in extreme precipitation with climate change of 
about 18 %, which could have considerable consequences. The correspondence between 
the results from Kharin and Zwiers (2000) and the results of CGCM1 presented here is 
obvious, because both results are at the same spatial scale. Spatial and temporal 
correlation lengths show a considerable increase (30-40 %) for the GCMs, implying 
more correlation and less variability. 

Temperature 
The models agree on the fact that the temperature is going to rise with a doubling of 
CO2. There is some difference between the GCMs (CGCM1 +2.7 °C, HadCM3 +3.7 °C 
CSIRO9 +2.9 °C) and RCMs (HadRM2 + 4.4°C and HIRHAM4 + 4.5°C) in the local 
analysis in Figure 4.13 as well as in the regional analysis in Figure 4.22 (changes 
respectively +2.8, +3.5, +2.9, +4.6, +4.7 °C). The average predicted temperature change 
in the local and regional analysis is thus about 3.7 °C. This change is comparable with 
the results from GCMs of 4.4 and 3.5 °C temperature increase in respectively HadCM2 
(Jones et al., 1997) and NCAR CCM (Giorgi et al., 1992) and results from RCMs of 
3.6, 4.0 and 2.8 °C temperature increase in respectively NCAR/PSU MM4 (Giorgi et 
al., 1992), HadRM2 (Jones et al. 1997) and again NCAR/PSU MM4 (Rotach et al., 
1997). 

The models differ with respect to the change in temperature variability in Figure 4.13 
and Figure 4.22. CGCM1, HadCM3 and HIRHAM4 predict an increase in temperature 
variability (0.5-1 °C for the standard deviation), whereas HadRM2 does not simulate 
significant changes in variability and CSIRO9 even predicts a decrease in variability. 
Gregory and Mitchell (1995) also predicted a decrease in variability in European winter 
with HadCM1. Mearns et al. (1995) found substantial changes in temperature variability 
when simulating with the RegCM RCM over the United States. They observed large 
decreases in variance throughout winter and early spring and sharp increases in variance 
in late spring and early summer. Only HadCM3 and HIRHAM4 predict a significant 
increase in the spatial correlation length of temperature according to Figure 4.23 (> 20 
%). The models do not simulate significant changes in temporal correlation behaviour 
(Figure 4.24). 

Major changes in climate due to a doubling of carbon dioxide are an increase in 
precipitation variability (10-20 %) and extreme precipitation (15-25 %) and an increase 
in average temperature of about 3.7 °C. In general, this implies an intensification of the 
hydrological cycle. Minor changes include a slight increase in average precipitation, 
more dry days and an increase in temporal and spatial correlation lengths for 
precipitation. 
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4.3.5 Appropriate scale statistics for local area 
The appropriate spatial scales can be assessed and the statistics from the preceding 
sections can be translated to these appropriate scales as described in section 2.3 (e.g. 
Figure 2.12). Suppose the permitted bias in the estimation of the statistics is set at 10 %. 
Then, the appropriate scale for the standard deviation of precipitation and the wet day 
frequency is estimated at 21 % of the average spatial correlation length (see Figure 2.9) 
and is 60 km. The appropriate scale for extreme precipitation is estimated at 25 % of the 
spatial correlation length associated with extreme precipitation (Figure 2.11) and is 20 
km. This 20 km scale will be used as the appropriate scale for all precipitation statistics, 
because extreme precipitation is of major importance for river flooding. The appropriate 
scale becomes 10 km and 30 km, if the permitted bias is set at respectively 5 % or 15 %. 
Thus, the permitted bias influences seriously the appropriate scale and should therefore 
be solidly founded. It is assumed that the parameters from the reduction methodologies 
remain unchanged with changed climate (λ, υ1, υ2, β1, β2) and considerable reduced 
scale (β1, β2). 

Assuming the same criteria for temperature statistics results in an appropriate scale of 
approximately 1000 km, which is much more than the extent of the Meuse area and the 
climate model resolutions. Therefore, modelled temperature data can directly be used 
and consequently it is not necessary to translate temperature statistics to statistics at 
appropriate scales. 
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Figure 4.25 Model scale and appropriate scale (20 km) standard deviation of precipitation in mm/day 

for NASA-GEOS1, NCEP-NCAR, CGCM1, HadCM3, CSIRO9, HadRM2 and HIRHAM4. 
The dotted line gives the average scaled station standard deviation. Results for current (1X) 
and changed (2X) climate are given. 
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Figure 4.26 Model scale and appropriate scale (20 km) wet day frequencies for NASA-GEOS1, NCEP-

NCAR, CGCM1, HadCM3, CSIRO9, HadRM2 and HIRHAM4. The dotted line gives the 
average scaled station wet day frequency. Results for current (1X) and changed (2X) 
climate are given. 
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Figure 4.27 Model scale and appropriate scale (20 km) precipitation 20-year return values RV(20) in 

mm/day for NASA-GEOS1, NCEP-NCAR, CGCM1, HadCM3, CSIRO9, HadRM2 and 
HIRHAM4. The dotted line gives the average scaled station RV(20). Results for current 
(1X) and changed (2X) climate are given. 

The results for the standard deviation, wet day frequency and 20-year return values for 
the two re-analyses, three GCMs and two RCMs for the appropriate and model scale are 
given in Figure 4.25, Figure 4.26 and Figure 4.27. These statistics can now also be 
compared at identical scales. 
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The results in Figure 4.25 and Figure 4.26 show considerable differences between re-
analysis/ GCM scale and appropriate scale standard deviation and wet day frequency 
(RE up to 40 %, about 20 % on average). The results in Figure 4.27 show even larger 
differences between re-analysis scale and appropriate scale return values (50-70 %) and 
GCM scale and appropriate scale return values (> 100 %). It is obvious that for these 
models statistics at appropriate scales should be used instead of at the original scales. 
Differences between appropriate and original scale RCM statistics are small (<10 %), 
because of the higher resolution of the RCMs. RCM precipitation data therefore may be 
directly used as input in the river basin model. The results presented here confirm the 
results from sub-sections 4.3.2 and 4.3.3, e.g. the good agreement of CSIRO9 and RCM 
simulated extreme precipitation and station extreme precipitation and the overestimation 
of extreme precipitation by CGCM1. The appropriate scale statistics are approximately 
the point statistics implied for each model, because the reduction factors κ2, R1 and R2 
are close to 1 for the appropriate scales. 

It was assumed that the parameters necessary to calculate the reduction factors remain 
unchanged with changed climate and geographic scale. It has not been attempted to 
verify this, but a first insight can be gained when the modelled spatial correlation 
lengths for the current and changed climate are compared. It was found that λ increases 
considerably with changed climate for all models (30-40 %). Osborn (1997) considers 
the possibility of changes in spatial scales of precipitation events as well. A larger λ 
results in an increase of the appropriate scale to 25-30 km. This will give less reduction 
and thus slightly smaller differences between model and appropriate scale return values 
(2-3 %). Similar or opposite results might be obtained for the other parameters. 
However, these differences are considered of minor importance with respect to the 
already found differences between model and appropriate scale statistics. 

4.3.6 Uncertainties for local area 
A first assessment of the total uncertainties can now be made by means of the procedure 
outlined in 4.2.2. The uncertainty will be assessed for the standard deviation and return 
values of daily precipitation with climate change simulated by the GCMs and RCMs at 
the appropriate scale and for the average and standard deviation of daily temperature 
with climate change simulated by the GCMs and RCMs. 

Precipitation 
Standard deviation. The model error (uncertainty 2) and intermodel uncertainties (mean 
of 3 and 5) for the GCMs expressed as RE are respectively about 12 % and 20 % (both 
uncertainty 3 and 5 are 20 %). The climate forcing uncertainty can not be extracted from 
the available data, but will be at least comparable with uncertainties 2 and 3/5. This 
uncertainty can be assessed by including more radiative forcing scenarios and 
ensembles (see Hulme and Carter, 1999). The uncertainties in Figure 4.2 have a rather 
stochastic nature, although the less important uncertainties 1 and 6 may have a more 
systematic nature. The uncertainties should therefore be summed in a quadratic rather 
than a linear way. This amounts up to 30-40 % if the main uncertainties are summed in 
this way (without sensitivity weighting factors). The uncertainties 2 and 3/5 for the 
RCMs are estimated as 10 % and 5 % (5/5). This amounts up to 15-20 % (including 
uncertainty 4). Important to mention is the fact that the intermodel uncertainties under 
current and changed conditions are almost equal, suggesting they are comparable and 
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even have similar origins. The calculated GCM uncertainty in the standard deviation of 
precipitation under climate change (noise ~30-40 %) is significantly larger than the 
simulated change (signal ~10 %). However, this uncertainty is not supposed to 
completely overshadow the simulated change, because some uncertainties seemed to be 
similar under current and changed climate conditions and there are no signs of abrupt 
changes in climate behaviour. The calculated RCM noise (15-20 %) and signal (12-17 
%) are more comparable. 

Return values. The model error and intermodel uncertainties are respectively about 23 
% and 28 % (uncertainty 3 is 33 % and uncertainty 5 is 23 %). The total uncertainty 
amounts up to 50 % of the mean return value. It is only about 20 % when the CGCM1 
results are not included in the calculation. However, it can be expected that results of 
other GCMs and RCMs not considered here may give similar over- or underestimations. 
Therefore, the uncertainty in mean return values with climate change is assumed to be 
about 50 %. It is important to note that the uncertainties due to extrapolation from 
annual maximum values to T-year return values is not included in this total uncertainty 
(the 95%-confidence intervals). The noise (~50 %) is again significantly larger than the 
signal (18 %). 

Temperature 
Average. The model error and intermodel uncertainties are respectively about 0.8 °C 
and 1.7 °C (uncertainty 3 is 2.1 °C and uncertainty 5 is 1.3 °C). The total uncertainty 
amounts up to 2-3 °C, which is comparable with the signal (3.7 °C). 

Standard deviation. The model error and intermodel uncertainties are respectively about 
0.5 °C and 0.8 °C (uncertainty 3 is 0.7 °C and uncertainty 5 is 0.9 °C). The total 
uncertainty is then about 1.3 °C, which is much more than the simulated change of 
about 0.4 °C. 

A summary of the average changes predicted by the GCMs and RCMs and associated 
uncertainties (signal and noise) with respect to the precipitation and temperature 
statistics considered is given in Figure 4.28. 
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Figure 4.28 Average predicted changes and uncertainties (signal and noise) with respect to precipitation 

and temperature statistics. 
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4.4 Summary and conclusions 
The average spatial correlation length of 300 km for daily station precipitation compares 
well with values found in literature, while the mean temporal correlation length could 
not be confirmed by earlier obtained results. The 95% confidence intervals and spatial 
variability of the precipitation station return values are large, which has rather a 
statistical than a physical cause. The average spatial correlation length for daily station 
temperature is large in comparison with the extent examined and is even underestimated 
according to extent vs. correlation length relationships. 

The regional comparison for the current climate largely confirmed the results from the 
local analysis. Overall, it seems that the re-analysis data are not well suited to validate 
GCM and RCM precipitation data given the differences found with the station data for 
this particular geographic region. The re-analyses underestimated the mean and standard 
deviation and performed only moderately for the wet and dry day frequencies. CGCM1 
simulated precipitation variability quite well (difference about 5 %), but tended to 
overestimate mean precipitation and wet day frequency. The goodness-of-fit of 
precipitation behaviour simulated by HadCM3, CSIRO9 and the RCMs (HadRM2 and 
HIRHAM4) fell in between CGCM1 and the re-analyses. Although differences between 
observations and model results were substantial, they were not unusual given the 
differences found in some other studies. Return values are simulated quite well by the 
RCMs and CSIRO9. They are underestimated by the re-analyses and overestimated by 
CGCM1 and HadCM3.  

The model intercomparison with respect to return values would look quite different 
when only station averaged values were used. In that case CGCM1 would come out as 
the best model in simulating extreme precipitation. These results were found in the 
small domain ‘local’ analysis as well as in the medium domain ‘regional’ analysis. 

Overall, it was found in the local analysis that HadCM3 and the regional models 
simulate daily temperature behaviour quite well, but in particular CGCM1 poorly 
reproduces this behaviour. In the regional analysis, the difference between average 
temperature simulated by CGCM1 and CSIRO9 and the other models is even larger (2-4 
°C). The underestimation of the temperature variability by CGCM1 in the local analysis 
is confirmed in the regional analysis. Combining the results from both analyses, it 
seems that NCEP-NCAR simulates spatial temperature behaviour most acceptably. 
Temporal correlation lengths are well simulated by the re-analysis and GCMs and rather 
underestimated (15-30 %) by the RCMs in the local and regional analysis. 

Average precipitation values do not show significant changes with climate change, 
while standard deviations increase by about 10 %. Return values increase for 5 out of 6 
GCM grid boxes with climate change in the local analysis. In the regional analysis 
results from the local analysis are confirmed to a large extent. There is a difference in 
mean increase of return values between CGCM1 (~8 %), HadCM3 (~15 %), CSIRO9 
(~25 %), HadRM2 (~19 %) and HIRHAM4 (~27 %). This means an average increase in 
extreme precipitation with climate change of about 18 %, which could have serious 
implications for society. The latter is in accordance with the few results found in 
literature. Spatial and temporal correlation lengths show a considerable increase (30-40 
%), implying more correlation and less variability. 
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The models agree on the fact that the temperature is going to rise with a doubling of 
CO2. The average predicted temperature change in the local and regional analysis is 
about 3.7 °C (2.9-4.7 °C). The models differ with respect to the change in temperature 
variability and only HadCM3 and HIRHAM4 predict a significant increase in the spatial 
correlation length of temperature (> 20 %). 

The uncertainties associated with precipitation under climate change were assumed to 
have a stochastic rather than a systematic character. The uncertainty in the standard 
deviation of GCM modelled precipitation under climate change amounted up to 30-40 
% if the main uncertainties are included (model error, inter-model uncertainties, climate 
forcing uncertainties and uncertainties due to up- and downscaling). This uncertainty is 
significantly larger than the simulated change of about 10 %. However, it is not 
supposed to completely cancel out the simulated change, because some uncertainties 
seemed to be similar under current and changed climate conditions and there are no 
signs of abrupt qualitative changes in climate behaviour in the near future. For the 
RCMs, noise (15-20 %) and signal (12-17 %) are more comparable. The calculated 
uncertainty in the precipitation return values under climate change of about 50 % is 
again significantly larger than the simulated change of about 18 %. The uncertainty in 
average temperature with climate change amounts up to 2-3 °C, which is comparable 
with the simulated change of about 3.7 °C. The uncertainty in the standard deviation of 
temperature with climate change is about 1.3 °C, which is much more than the 
simulated change of about 0.4 °C. 

The reduction methodologies associated with the standard deviation, wet day 
frequencies and return values of precipitation can be used to compare point and areally 
mean values, but caution should be taken with respect to their use for the determination 
of wet day frequencies. Areally mean return values calculated by averaging station 
values and using the reduction methodology compare favourably only for the RCMs, 
which have the highest spatial resolution. The observed extreme values are 
overestimated when averaging over large areas partially covered by stations and it is 
therefore necessary to use the extreme value reduction methodology. It is recommended 
to use in this reduction methodology correlation lengths associated with extreme 
precipitation fields instead of average correlation lengths as has been done for standard 
deviations. Annual extreme precipitation fields are assumed to be appropriate in this 
case. It can reasonably be assumed that non-zero and annual maximum daily station 
precipitation values are respectively exponentially and Gumbel distributed and that non-
zero and annual maximum areally mean precipitation are respectively gamma and 
Gumbel distributed. These assumptions have been supported by statistical significance 
tests and probability plots and have been used in the extreme value reduction 
methodology. 

The appropriate scale for the standard deviation of precipitation and the wet day 
frequency was estimated at 21 % of the spatial correlation length or 60 km, when the 
permitted bias in the estimation of these statistics is set at 10 %. The appropriate scale 
for extreme precipitation was estimated at 25 % of the spatial correlation length or 20 
km. This 20 km scale has been used as the appropriate scale for all precipitation 
statistics, because extreme precipitation is of major importance for river flooding. The 
results show considerable differences between model scale and appropriate scale 
standard deviation and wet day frequency (differences up to 40 %, about 20 % on 



 Chapter 4 96

average). Differences for return values are even larger, for re-analysis scale and 
appropriate scale 50-70 % and GCM scale and appropriate scale more than 100 %. It is 
obvious that for these models statistics at appropriate scales instead of at their original 
scales should be used. Differences between appropriate and original scale RCM 
statistics are small (<10 %), because of the higher resolution of the RCMs. RCM 
precipitation data may therefore be directly used as input in for example a rainfall-
runoff model. Assuming the same criteria for temperature statistics gives an appropriate 
scale of approximately 1000 km, which is much more than the extent of the Meuse area 
and the climate model resolutions. Therefore, modelled temperature data can directly be 
used and consequently it is not necessary to translate temperature statistics to statistics 
at appropriate scales. 



 

Chapter 5  

River basin analysis 

5.1 Introduction 
The occurrence of extreme discharges is controlled by atmospheric input and runoff 
processes in the river basin. The atmospheric input has been considered in chapter 4. 
Runoff processes such as overland flow and subsurface flow will be considered in this 
chapter. Main features related to these processes are the relative importance of flood 
generating processes, the appropriate spatial and temporal scales of these processes and 
the corresponding appropriate process formulations. These features together constitute 
the essential components of an appropriate river basin model for the simulation of river 
flooding. 

In section 5.2, the processes and the related variables are discussed, in section 5.3 the 
appropriate scales of the most important variables are determined and integrated and in 
section 5.4 process formulations are considered. Finally, in section 4.4 the major 
findings are summarised. 

5.2 Processes and variables 

5.2.1 Processes in the river basin 
The hydrological cycle is the most fundamental principle of hydrology. Water 
evaporates from the oceans and the land surface and is transpirated by vegetation. It is 
then transported over the earth in the atmospheric circulation as water vapour and 
precipitates again as rain or snow. In the land phase of the hydrological cycle, water is 
intercepted by vegetation, provides runoff on the land surface, infiltrates into soils, 
recharges groundwater and discharges into streams. Ultimately, it flows out into the 
oceans from which it will eventually evaporate once again. Every process in the 
hydrological cycle influences the amount of water flowing through a river. The 
dominant process is precipitation which is the key input into a river basin. The 
hydrological processes in the land phase mainly determine the fraction of precipitation 
available for river flow and the distribution in time of river flow. In this thesis, in 
particular the flood generating processes are of importance. These and other processes 
have been, and still are, extensively studied in so-called research catchments. These 
field studies have provided useful information on the occurrence and relative 
importance of flood generating processes under a variety of climatological and 
geographical conditions. The integrated river basin response as a result of the complex 
interactions between hydrological processes is predicted by rainfall-runoff models (see 
chapter 1). 
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5.2.2 Flood generating processes 
Three processes are being recognised as being responsible for the relatively fast 
transport of precipitation to the stream network during flood events (Maidment, 1993): 
•  infiltration excess overland flow (Horton overland flow) 
•  saturation excess overland flow (Dunne overland flow) 
•  subsurface storm flow (interflow) 

Infiltration excess overland flow is surface runoff produced at the ground surface when 
the rainfall intensity exceeds the infiltration capacity. It is named after Horton, who in 
the 1930’s claimed that runoff peaks are generated by this mechanism only (Hall, 1987). 
Saturation excess overland flow occurs when, on part of the drainage basin, the surface 
horizon of the soil becomes saturated as a result of either the build up of a saturated 
zone above a soil horizon of lower hydraulic conductivity or the rise of a shallow water 
table to the surface (Maidment, 1993). Anderson and Burt (1990) recognise three 
locations where soil saturation relatively often occurs: near-stream areas at the base of a 
hillslope, hill slope hollows and locations where a low-conductivity subsurface layer is 
positioned close to the ground surface. Infiltration excess and saturation excess water 
flows through micro channels, rills and gullies to first-order streams and can thus be 
considered as extended stream systems. Subsurface storm flow is water that infiltrates 
into the soil and percolates rapidly, largely through macropores such as cracks and root 
and animal holes, and then moves laterally in a temporarily saturated zone. It reaches 
the stream channel quickly and differs from other subsurface flow by the rapidity of its 
response and its relatively large magnitude (Maidment, 1993). 

The relative contributions of these three flood generating processes to a specific flood 
vary heavily between different watersheds and different precipitation events. Therefore, 
there is no uniformly valid concept of the relative importance of flood generating 
processes. However, field experiments have provided information on the influence of 
catchment characteristics on the relative contributions of flood generating processes. 
Diermanse (2001) summarised a number of catchment characteristics known to enhance 
a specific process: 
•  infiltration excess overland flow: impermeable soils, no vegetation and high rainfall 

intensities 
•  saturation excess overland flow: shallow, moderately permeable soils, concave-

shaped hills and wide valley bottoms 
•  subsurface storm flow: steep straight slopes, deep permeable soils, forests and 

narrow valley bottoms 

The majority of the river basins consists of a combination of these characteristics and 
therefore floods will be generated by a combination of the three processes. In particular 
in a large basin such as the Meuse, all kinds of combinations of catchment 
characteristics can be found. However, it is widely recognised that in vegetated basins 
with a humid climate (e.g. the Meuse basin) a large proportion of the flood runoff 
originates from a small saturated part of the basin (variable source area), mainly to be 
found adjacent to the stream (Diermanse, 2001). These areas are often saturated due to 
the relatively large upslope area and complete saturation is the requirement for 
saturation overland flow and the best condition for subsurface storm flow to occur. 
Furthermore, flow paths to the streams are relatively short. 
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A major consequence of the dominating role of saturated areas in generating floods is 
that soil moisture conditions at the beginning of a flood are of importance and should be 
accurately determined. These initial conditions are mainly influenced by the preceding 
precipitation, evapotranspiration and subsurface flow in the soil matrix. Additionally, 
the river flow itself contributes to the occurrence and magnitude of floods. 

The next step is to link the important processes for flood generation to variables to be 
able to assess the appropriate scales for the different processes through the variables. 
The variables to be considered are meteorological variables and catchment 
characteristics. The most important variables for the flood generating processes and the 
processes important for the initial conditions will determined in the next sub-section. 

5.2.3 From processes towards variables 
Table 5.1 shows the most important variables influencing the different flood generating 
processes. These relations are based on several studies (e.g. Mauser and Schädlich, 
1998; Veihe and Quinton, 2000) and general literature (e.g. Maidment, 1993; Shaw, 
1994). Meteorological processes (precipitation, potential evapotranspiration) are treated 
as variables, because they are inputs into the river basin and thus are not explicitly 
modelled. It is obvious that precipitation influences all important processes, as already 
observed in sub-section 5.2.2. Other important variables in the flood generation process 
are elevation, land use and soil properties such as texture and parent material. 
Temperature is the most important variable determining potential evapotranspiration 
and the soil moisture content (texture, parent material) plays a significant role in the 
realisation of the actual evapotranspiration. The meteorological variables precipitation, 
temperature and potential evapotranspiration have been analysed in chapter 4. The 
catchment variables (elevation, soil, land use) and their related processes will be 
considered in the remainder of this chapter. 

Table 5.1 Variables influencing the identified dominant processes. 
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5.3 Spatial and temporal scales 

5.3.1 Introduction 
The spatial and temporal scales of elevation, soil and land use will be discussed in this 
section. The emphasis will be on the spatial scales, because the variables are relatively 
time-invariant. The variables elevation, soil and land use are taken to be independent of 
time on the temporal domain considered here (< 100 years). Although land use may 
show a seasonal dependence, in particular for agricultural areas and forests, and long 
term trends, it is assumed to be a time-invariant variable in this thesis. First, some 
examples of scale related studies with respect to elevation, soil and land use are given in 
Table 5.2 to identify possible generalities. 

Table 5.2 Scale related studies with respect to elevation, soil and land use (appr. means appropriate). 

Reference Variable Application 
area 

Extent Support 
scale 

Method Appr. 
scale 

   km2 m  m 

Bruneau et al., 1995 elevation Southern 
France 

12 20-100 hydrological <50 

Brasington and Richards, 1998 elevation Nepal 4.5 20-500 entropy 100-
200 

Wolock and McCabe, 2000 elevation US 50 x 
7000 

100-
1000 

hydrological 2-2500

Farajalla and Vieux, 1995 soil 
property 

Washita, US 610 30-2500 entropy 1200 

Western et al, 1998 soil 
moisture 

Australia 0.1 15 geostatistical 35-60 

Cosh and Brutsaert, 1999 soil 
moisture 

Washita, US 450 200 geostatistical 1000 

Moody and Woodcock, 1995 land use California, US ~2500 30-1020 statistical 250-
500 

Walsh et al, 2001 land use Northern 
Thailand 

1300 30-1050 statistical ~100 

Kok et al., 2001 land use Costa Rica, 
Honduras 

~105 15000-
~300000

sensitivity  

Kok and Veldkamp, 2001 land use central 
America 

~105 15000-
75000 

statistical  

 

In general, it can be concluded from the studies in Table 5.2 and other studies not shown 
here, that appropriate scales for elevation, soil type and land use type vary considerably 
dependent on geographical area (climate, vegetation), extent of the area and support 
scale of the data. For example, it is found that the scales determined by Farajalla and 
Vieux (1995) and Cosh and Brutsaert (1999) compare favourably, in contrast to the ones 
estimated by Western et al. (1998). This may be due to incorrect, large sampling 
distances in the former studies resulting in an overestimation of the ‘true’ appropriate 
scale. It should be mentioned that the spatial scales of land use have been mainly 
assessed in relation to land use change, implications of spatial scales of land use for 
hydrological modelling are rarely investigated. The extent and support scale are the 
basics of the scale triplet defined in chapter 2 and can have a substantial effect on the 
estimation of the correlation length and related appropriate scales (see Western and 
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Blöschl, 1999). Therefore, in the remaining part of this section the appropriate scales for 
the key variables will be determined and integrated taking into account the influences of 
these scale features. 

5.3.2 Observed data 
Elevation, land use and soil data have been used in this river basin scale analysis. The 
data sources and spatial characteristics (spacing, extent) of the data will be described 
below. 

Elevation 
Elevation data are from a global Digital Elevation Model (DEM) GTOPO30 (U.S. 
Geological Survey, 1996) and a continental United States digital elevation model 
US7.5MIN (U.S. Geological Survey, 1995). These data are distributed by the EROS 
Data Center Distributed Active Archive Center (EDC DAAC), located at the U.S. 
Geological Survey's EROS Data Center in Sioux Falls, South Dakota. Two data sources 
are used here to compare variable-scale relationships (see section 2.3.7) derived from 
high resolution data (US7.5MIN, only available for the United States) with lower 
resolution data (GTOPO30). The geographical region chosen for this comparison is a 
region in the Northeast of the United States (69°W-68°W and 46°N-47°N) with a 
similar elevation pattern and elevation distribution as the Meuse basin. 

GTOPO30 is a global data set covering the full extent of latitude and longitude with 
elevation values ranging from –407 to 8752 m. The horizontal grid spacing is 30-arc 
seconds (1/120 degree or approximately 1 km) and the vertical unit is meter above mean 
sea level. The source for the European GTOPO30 data is the Digital Terrain Elevation 
Data (DTED) set. DTED is a raster topographic data base with a horizontal grid spacing 
of 3-arc seconds (approximately 90 m). The source for United States GTOPO30 data are 
USGS 1-degree DEMs with a horizontal grid spacing of 3-arc seconds. The 30-arc 
second data were obtained from the 3-arc second data by selecting one representative 
elevation value to represent the area covered by 100 full resolution cells (10x10). The 
absolute vertical accuracy of GTOPO30 for Europe and the United States is +/- 30 m 
linear error at the 90%-confidence level (U.S. Geological Survey, 1993) 

US7.5MIN is a data set for the continental United States. The horizontal grid spacing is 
30 m and the vertical unit is meter above mean sea level. The data sources are digitised 
cartographic map contour overlays and scanned National Aerial Photography Program 
(NAPP) photographs. The absolute vertical accuracy of US7.5MIN derived from 
photographs is 7 m or better (90 %) and 8-15 m (10 %) (U.S. Geological Survey, 1995). 
Figure 5.1 shows the elevation maps for the Meuse basin (upstream of Borgharen) from 
GTOPO30, the US region from GTOPO30 and two arbitrary sub-regions (of about 150 
km2) within the US region from US7.5MIN. 
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c)

b)

 
Figure 5.1 Elevation in m for a) Meuse basin upstream of Borgharen from GTOPO30; b) US region 

from GTOPO30 (extent = 256 km x 256 km) with five sub-regions studied; c) two arbitrary 
sub-regions within the US region from US7.5MIN (extent = 11 km x 14 km). 
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Soil 
Soil data are from the European Soil Database. The data are distributed by the European 
Soil Bureau located at the Joint Research Centre’s Space Applications Institute in Ispra, 
Italy. Only data from the Soil Geographical Data Base (King et al., 1994), part of the 
European Soil Database, are used. The horizontal scale is 1:1,000,000 similar to a 
horizontal grid spacing of approximately 2.5 km, because the positional accuracy is 
estimated at 0.5-5 km (0.5-5 mm at scale 1:1,000,000). Two attributes from this 
database have been used, namely Dominant Parent Material (MAT1) and Dominant 
Surface Textural Class (TEXT1). Figure 5.2 gives the spatial distribution of MAT1 and 
TEXT1 for the Meuse basin. 
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No texture (histosols, ...)

b)

 
Figure 5.2 Spatial distribution of a) Dominant Parent Material (MAT1) and b) Dominant Surface 

Textural Class (TEXT1) in the Meuse basin. 
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Land use 
Land use data are from the European Environmental Agency (EEA) NATLAN 
Database. The data are distributed by the European Environmental Agency in 
Copenhagen, Denmark. Only data from the CORINE Land Cover Data Base (Bossard et 
al., 2000), part of the EEA NATLAN database, are used. The horizontal grid spacing is 
250 m. The CORINE database has 44 classes and is derived from Landsat and SPOT 
satellite images. Figure 5.3 gives the spatial distribution of land use types for the Meuse 
basin. 
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Figure 5.3 Spatial distribution of land use types in the Meuse basin. 
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5.3.3 Data statistics and scales 

Elevation 
Figure 5.4 shows the cumulative frequency distribution of elevations from US7.5MIN 
(US 30m DEM) for five selected sub-regions of about 150 km2, GTOPO30 for the 
whole region (US 1000m DEM), GTOPO30 for the 15 main sub-catchments of the 
Meuse basin (Tributary 100m DEM) and GTOPO30 for the Meuse basin (Meuse 
1000m DEM). The cumulative frequency distributions for the US region and the Meuse 
basin are similar indicating that the US region has a similar elevation pattern and 
elevation distribution as the Meuse basin. The cumulative frequency distributions for 
elevations derived from the US 30m DEM are steeper than those derived from the 
Tributary 1000m DEM and thus in the latter DEMs larger elevation differences can be 
found. This can be explained by the fact that the Tributary 1000m DEMs have been 
derived for larger areas (350-3200 km2) than the US 30m DEMs (150 km2). A similar 
effect as for the extent has been observed for the support scale, i.e. the smaller the 
support scale for a specific area, the larger elevation differences. Large elevation 
differences are particularly found for the sub-catchments in the eastern part of the 
Meuse basin (e.g. the Amblève). The mean, minimum and maximum elevation in the 
Meuse 1000m DEM are respectively 284, 43 and 676 m. 
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Figure 5.4 Cumulative frequency distribution of elevation for US 30m DEM, US 1000m DEM, Meuse 

tributary 1000m DEM and Meuse 1000m DEM. 

Figure 5.5 shows the semi-variance as a function of separation distance for the US 
1000m DEM, the Meuse 1000m DEM and the US 30m DEM. For the US 30m DEM, 
the semi-variance has been derived for the five sub-regions from Figure 5.1 for very 
small separation distances up to 2 km. Nine grid points were selected in each sub-region 
and for each grid-point average semi-variances were calculated for a specific separation 
distance (radius). The average semi-variance as a function of separation distance over 
45 (5 × 9) grid points is shown in Figure 5.5b. Similar approaches were used for the US 
1000m DEM and Meuse 1000m DEM, but then for nine grid points in the whole region 
and separation distances up to 20 km. The variograms in Figure 5.5a are similar, 
although the one for the US region shows less spatial variability. Therefore, it is 
assumed that the US region is representative for the Meuse basin with respect to 
elevation patterns and consequently, the variogram for the US 30m DEM in Figure 5.5b 
is representative for the Meuse basin as well. 
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Figure 5.5 Semi-variance in m2 as a function of separation distance in m for a) US 1000m DEM and 

Meuse 1000m DEM and b) US 30m DEM. 

The spatial correlation length should be determined from the 30m DEM, because the 
resolution of the 1000m DEMs is too coarse in relation to the expected or ‘true’ 
correlation length. Western and Blöschl (1999) presented directives on spacing, support 
and extent when estimating the correlation length. They gave for spacing (equal to 
support in this case) a maximum value of 20 % of the true correlation length. Assuming 
true correlation lengths of about 100-1000 m corresponding to realistic hill slope 
lengths, it is obvious that 1000m DEMs cannot be used for this purpose. The mean, 
minimum and maximum correlation length determined from the US 30m variograms are 
respectively 527, 272 and 1401 m. It can be seen that even for the minimum correlation 
length the resolution of the US 30m DEM is sufficient. The mean correlation lengths 
computed from the US 1000m DEM and the Meuse 1000m DEM were respectively 
4138 and 4220 m. This overestimation of the correlation lengths could be expected from 
the relations between spacing and apparent correlation described in Western and 
Blöschl (1999). The appropriate scale for elevation can be determined with the criterion 
for appropriate scales with respect to variability from section 2.3.6. There, it was found 
that the appropriate scale for an appropriate description of the variability is about 20 % 
of the correlation length. The appropriate scale for elevation in the Meuse basin is 
therefore 110 m. This scale is in the same range as the scales recommended for DEMs 
in other studies (e.g. Brasington and Richards, 1998). 



River basin analysis 109

a) 

 
b) 

 
Figure 5.6 Elevation map for US 30m DEM and aggregated versions: 60m, 120m, 240m, 480m, 960m, 

1920m, 3840m and 7680m for 2 sub-regions of Figure 5.1c (a and b). See Figure 5.1 for the 
legend. 
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Figure 5.7 Elevation map for Meuse 1000m DEM and aggregated versions: 2000m, 4000m, 8000m, 

16000m and 32000m. See Figure 5.1 for the legend. 

The methodology for the integration of scales requires relationships between key 
variable scales and the output variable of interest (section 2.3.7). The key variable 
elevation is represented in equation (2.48) by the slope. Therefore, the average slope 
should be derived from elevation maps with different resolutions. These different 
resolutions are assumed to represent different data availability levels (e.g. at 1 km or 8 
km resolution). The elevation maps for the US 30m DEMs from Figure 5.1c are given 
in Figure 5.6 together with aggregated versions of these maps up to a version with one 
average elevation. Figure 5.7 gives the elevation map for the Meuse 1000m DEM from 
Figure 5.1a together with its aggregated versions. 
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Figure 5.8 Frequencies of a) Dominant Parent Materials (MAT1) and b) Dominant Surface Textural 

Classes (TEXT1) in the Meuse basin. 

Figure 5.8 shows the frequency distribution of Dominant Parent Materials (MAT1) and 
Dominant Surface Textural Classes (TEXT1) in the Meuse basin. Major dominant 
parent materials are secondary limestone (18 %, particularly in the southern part of the 
basin), residual and stony loam (34 %, in the Ardennes and central part) and loess (17 
%, in the northern part). Besides these dominant materials other, minor materials can be 
found as well in these areas. The major surface textural class is medium, which means 
18% < clay < 35% and sand > 15% or clay < 18% and 15% < sand < 65% (see Figure 
5.2). 
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Figure 5.9 Semi-correlation as a function of separation distance in m for a) Dominant Parent Materials 

(MAT1) and b) Dominant Surface Textural Classes (TEXT1). 

Variograms for the different soil types can not be constructed, because soil data are 
categorical data and thus semi-variances can not be computed. Therefore, a so-called 
semi-correlation is calculated (see section 2.3 4). These semi-correlations are plotted vs. 
separation distance in a semi-correlogram. The semi-correlogram can be used to derive 
the correlation lengths for the different soil types. Figure 5.9 shows the semi-
correlogram for the different classes of MAT1 and TEXT1. Obviously, the general trend 
is a decreased semi-correlation with increased separation distance. This trend is 
approximately exponential as confirmed by the high weighted mean (taking into 
account the frequencies) PPCC* values (see section 2.3) of 0.93 for MAT1 and 0.98 for 
TEXT1. The semi-correlogram for secondary limestone in Figure 5.9a shows a slightly 
increasing semi-correlation with increasing distance between 30 and 45 km. This may 
be attributed to large scale spatial patterns of secondary limestone. The semi-correlation 
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decreases towards its ‘background’ frequency from Figure 5.8 at a distance larger than 
the corresponding correlation length. The semi-correlograms can be used to derive 
spatial correlation lengths. 
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Figure 5.10 Spatial correlation length in m for a) different Dominant Parent Materials (MAT1) and b) 

different Dominant Surface Textural Classes (TEXT1). 

Figure 5.10 shows the spatial correlation lengths for the different classes of MAT1 and 
TEXT1. The correlation lengths for MAT1 vary between 1-10 km for residual clay, clay 
with flints and schists to more than 30 km for secondary limestone and secondary marl. 
The correlation lengths for TEXT1 vary between 15-35 km. The horizontal grid spacing 
of the soil data is sufficient for most of the soil types, because their correlation lengths 
are more than five times the grid spacing The grid spacing is insufficient for the above 
mentioned three MAT1 classes with small correlation lengths and limestone. However, 
these MAT1 classes occupy less than 5 % of the Meuse basin and therefore possible 
errors in estimated correlation lengths due to grid spacing can be neglected. The 
weighted mean spatial correlation length for dominant parent material is about 25.1 km. 
Then, the appropriate scale for a good description of the parent material variability is 
about 20 % of this correlation length or 5.3 km. These figures are for the dominant 
surface textural class respectively 31.5 km and 6.6 km. The appropriate scale with 
respect to the parent material has been chosen to be representative for the soil data, 
because it is the smallest one and it is supposed to be more suitable in the methodology 
for the integration of appropriate scales. The correlation lengths for parent material and 
dominant surface textural class are much larger than the correlation lengths for soil 
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moisture found in the literature (see 5.3.1; 50-1200 m). These differences can be 
attributed to the additional variability for soil moisture introduced by for example 
topography and vegetation on top of the variability of the parent material and soil 
texture itself. 

 
Figure 5.11 Spatial distribution of Dominant Parent Material (MAT1) for Meuse basin (1000 m) and 

aggregated versions: 2000m, 4000m, 8000m, 16000m and 32000m. See Figure 5.2 for 
legend. 

The key variable soil is represented in equations (2.46)-(2.48) by the curve number CN. 
The average CN will be derived from soil (MAT1) maps with different resolutions. The 
MAT1 map for the Meuse basin from Figure 5.2a is given in Figure 5.11 together with 
its aggregated versions. 
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Figure 5.12 Frequencies of land use types in the Meuse basin. 

Figure 5.12 shows the frequency distribution of land use types in the Meuse basin. The 
land use types are described in Bossard et al. (2000). In the Meuse basin, 29 of the 44 
land use types in the CORINE data base are present. Urban, industrial and mining areas 
occupy about 9 % of the space, agricultural areas 54 %, forests and scrubs about 36 % 
and water related areas about 1 %. The Meuse north sub-catchment has the largest 
fraction of urban, industrial and mining areas (29 %, not shown here), the North-western 
Jeker and Mehaigne sub-catchments have the largest fraction agricultural areas (80 %) 
and the Viroin sub-catchment has the largest fraction forests and scrubs (57 %). 
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Figure 5.13 Semi-correlation as a function of separation distance in m for different land use types. 
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Land use data are categorical data as well and therefore semi-correlograms are 
computed for the different land use types as shown in Figure 5.13. The correlograms 
can be approximated by exponential functions as confirmed by the reasonable weighted 
mean PPCC* value of 0.89. Figure 5.13 shows expected features such as the slow 
decrease of the semi-correlation with separation distance for broad-leaved forest and the 
fast decrease of the semi-correlation with separation distance for continuous urban 
fabric. The ‘background’ frequency from Figure 5.12 is reached at a large distance 
compared to the correlation length as shown for some land use types with small 
correlation lengths (<< 20 km). 
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Figure 5.14 Spatial correlation length in m for land use types in the Meuse basin. 

Figure 5.14 shows the spatial correlation lengths for the different land use types in the 
Meuse basin. The correlation lengths vary between 100-500 m for port areas, airports, 
rice fields and sclerophyllous vegetation to about 20 km for discontinuous urban fabric, 
broad-leaved forest and mixed forest. The horizontal grid spacing of the CORINE land 
use data is sufficient for most of the land use types, except for the above mentioned four 
land use types with small correlation lengths and construction sites, sport and leisure 
facilities and natural grassland. However, these seven land use types occupy less than 1 
% of the Meuse basin and therefore possible errors in estimated correlation lengths due 
to grid spacing can be neglected. The weighted mean spatial correlation length for land 
use is 15.7 km which gives an appropriate scale for a good description of the land use 
variability of about 3.3 km. This appropriate scale is in the middle of the range of spatial 
scales recommended for land use mapping and used in land use models (see 5.3.1). 
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Figure 5.15 Land use map for Meuse basin (250 m) and aggregated versions: 500m, 1000m, 2000m, 

4000m, 8000m, 16000m and 32000m. See Figure 5.3 for the legend. 

The key variable land use is represented in equation (2.46)-(2.48) by the curve number 
CN as well. The average CN will be derived from land use maps with different 
resolutions. The land use map from Figure 5.3 is given in Figure 5.15 together with its 
aggregated versions. 

5.3.4 Integration of appropriate scales 
Here, the appropriate scales for precipitation (4.3.5), elevation (5.3.3), soil (5.3.3) and 
land use (5.3.3) are integrated to one appropriate model scale. This is achieved by 
applying the methodology described in 2.3.7. First, the relationships between the 
variables from equations (2.46)-(2.48) (the key variables) and spatial scales are 
considered. Second, these relationships are integrated into equations (2.46)-(2.48) to 
obtain relations between the output and spatial scales for the different key variables. The 
output of interest is the peak discharge with a return period of 20 years RV(20). 
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Precipitation 
The key variable precipitation in equation (2.46) Pe should be the extreme precipitation 
with a return period of 20 years, because of the return period of 20 years assumed for 
the discharge. The relation between precipitation return values and scales has been 
theoretically considered in chapter 2 [see equations (2.44) and (2.45) and Figure 2.11] 
and has been applied in chapter 4. This relation can directly be used in equation (2.46) 
to obtain a relationship between the output and spatial scales of extreme precipitation. 

Elevation 
The key variable elevation is represented in equation (2.48) by the slope S0. The average 
slopes derived from the maps in Figure 5.6 and Figure 5.7 for the US 30m DEM and 
Meuse 1000m DEM as a function of scale are given in Figure 5.16. Also given are the 
average slopes derived from the US 1000m DEM map and their aggregated versions as 
a function of scale. Main features are the similarity of the US 1000m DEM and Meuse 
1000m DEM slope vs. scale relationships and the apparent continuity of the 
relationships over a broad range of scales (from 30 m to more than 30 km). The 
combination of these two aspects leads to the assumption that the slope vs. scale 
relationships from the US 30m DEM can also be used for the Meuse basin and thus the 
appropriate scale for elevation (represented by slope) of about 100 m (see 5.3.3) is 
covered by these relationships. This coverage is necessary for the methodology for the 
integration of appropriate scales. Namely, the scale-variable relation should at least 
cover the range between the appropriate variable scale and the appropriate model scale 
or vice versa. This requirement has been checked after the determination of the 
appropriate model scale. Another interesting feature in Figure 5.16 is the clear 
distinction between relations for flat US regions (lower curves for US 30m DEM) and 
hilly US regions (upper). 
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Figure 5.16 Average slope as a function of scale in m for US 30m DEM, US 1000m DEM and Meuse 

1000m DEM. 
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Soil and land use 

Table 5.3 Values for variables/ parameters in equations (2.46)-(2.48). 

Variable/ parameter Unit Value 
Pe mm 44.6 
qp m3/s 2390 
A km2 21 103

Tp hour 24 
l = √A km 145 
S0 parts/10000 176 
CN - 77.1 

The key variables soil and land use are represented in equations (2.46)-(2.48) by the 
curve number CN. The average, overall curve number for the Meuse basin has been 
derived with equations (2.46)-(2.48) and the variables and parameters in Table 5.3. The 
values for Pe and qp have been derived keeping in mind the 20-year return period and 
the scale (for Pe) and the value for S0 is estimated from the elevation field with the 
highest resolution (1000 m). This results in an average CN of 77.1 (see Table 5.3) for 
the soil and land use map with the highest resolution. This average CN and standard 
tables (Maidment, 1993) have been used to estimate curve numbers for the different soil 
and land use types in the maps from Figure 5.11 and Figure 5.15. Finally, the average 
curve numbers as a function of map resolution for soil parent material and land use 
derived from these maps could be determined. These relations are given in Figure 5.17 
and Figure 5.18. There is only a slight change of average CN with soil and land use 
scale, respectively an increase of about 1.0 and a decrease of about 1.2 (at 16 km). 
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Figure 5.17 Average curve number as a function of scale in m for soil (Dominant Parent Material). 
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Figure 5.18 Average CN as a function of scale in m for land use. 
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Integration 
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Figure 5.19 Dimensionless peak discharge qp’ as a function of key variable spatial scale in m. 

The derived scale relationships for extreme precipitation, slope and curve number can 
be implemented in equations (2.46)-(2.48) to obtain relationships between the output 
and key variable scales. Figure 5.19 gives the dimensionless peak discharge [qp(spatial 
scale)/qp(smallest spatial scale)] as a function of key variable spatial scale. The peak 
discharge increases slightly with scale for soils in contrast to the other key variables, 
which may be due to the spatial distribution of soil types. This distribution results in a 
particular distribution of the curve numbers at different scales and finally the relations 
in this figure. Figure 5.19 has been used to assess the weights associated with an 
appropriate variable scale by comparing the slopes of the different relationships. The 
larger the slope, the larger the weight which should be attributed to a specific 
appropriate variable scale. The sum of the four weights (precipitation, elevation, soil 
type and land use) is obviously equal to 1. The slope has been determined for at least the 
range between the appropriate variable scale and the appropriate model scale (checked a 
posteriori). The appropriate variable scales, the associated weights and the resulting 
appropriate model scale are summarised in Table 5.4. The appropriate model scale of 
about 10 km will result in 225-250 model cells or sub-basins when modelling the Meuse 
basin. 

Table 5.4 Appropriate variable scales, associated weights and appropriate model scale. 

Variable Appropriate variable scale Weight 
 (km) (-) 
Precipitation 19.9 0.39 
Elevation 0.1 0.26 
Soil 5.3 0.21 
Land use 3.3 0.14 
Integrated 9.5 1.00 
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5.4 Process formulations 
Given the dominant processes at the appropriate scales described in section 5.2 and 5.3, 
the appropriate formulations have to be determined. For each process, the most 
important formulations available will be considered and their appropriateness for the 
current research objective will be assessed, mainly on the basis of literature. 

Actual evapotranspiration 
The spatial and temporal variability of potential evapotranspiration has been considered 
in chapter 4. This potential evapotranspiration has been derived by the Royal 
Meteorological Institute of Belgium with the Penman-Monteith equation which 
combines energy and diffusion features (Maidment, 1993) 
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where ∆E is the gradient of the relation between saturated vapour pressure and 
temperature (kPa °C-1), γE is the psychrometric constant dependent on air temperature 
(kPa °C-1), Rn is the net radiation exchange for the free water surface (mm day-1), Ah is 
the energy advected to the water body (mm day-1), U2 is the wind speed measured at 2 
m (m s-1), DE is the vapour pressure deficit (kPa) and λE is the latent heat of 
vaporisation (MJ kg-1). This equation requires measurement of various variables and 
therefore simplifications have been proposed. These include radiation-based equations 
which neglect the second term of equation (5.1) (e.g. Turc, 1961; Priestley and Taylor, 
1972; Doorenbos and Pruitt, 1977) and temperature-based methods (e.g. Blaney and 
Criddle, 1950; Hargreaves et al., 1985). 

Potential evapotranspiration is reduced to actual evapotranspiration by differences in 
land use compared to potential conditions and soil moisture restrictions. The former 
restriction is often incorporated through multiplication of the reference crop 
evapotranspiration [a slightly modified version of equation (5.1)] with a crop coefficient 
dependent on the crop and its development and the average climate. The soil moisture 
restriction is usually modelled by multiplying potential evapotranspiration with a factor 
dependent on the volumetric soil moisture content θ (e.g. for daily values Baier and 
Robertson, 1966; Minhas et al.,1974). 

Kite and Droogers (2000) compared eight different methods to estimate actual 
evaporation and transpiration based on field data (FAO-24, FAO-56 and scintillometer), 
hydrological models (SWAP for the field scale and SLURP for the basin scale) and 
satellite data [feedback mechanisms (LANDSAT, NOAA AVHRR), biophysical model 
and energy balance equations]. The SLURP model uses the Penman-Monteith equation 
(5.1) to calculate potential evapotranspiration and was the only one able to estimate 
evapotranspiration for the full spatial and temporal ranges (crop to basin, day to long-
term annual average). 

Although it is difficult to give a general rule for evapotranspiration modelling, it can be 
concluded that the Penman-Monteith equation is most probably adequate in describing 
evapotranspiration at a large range of spatial and temporal scales. Radiation-based 
methods may be used in case of data restrictions, but methods solely based on 
temperature should generally be avoided (Maidment, 1993). 
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Surface flow 
Surface flow consist of infiltration and saturation excess overland flow and channel 
flow. Overland flow is the flow of water over the land surface and channel flow is the 
flow of water through streams and rivers. Overland flow occurs through micro-
channels, rills and gullies and can be considered as a small scale version of stream flow 
(Freeze and Harlan, 1969). Overland and channel flow can be modelled by the Saint-
Venant equations of continuity and momentum for one-dimensional, unsteady flow 
(Saint-Venant, 1871) 
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where h is the flow depth [L], t is time [T], x is the longitudinal dimension [L], v is the 
flow velocity [LT-1], Ss is a sink/source term representing interactions with external 
processes like precipitation, evapotranspiration and infiltration [LT-1], g is the 
acceleration due to gravity [LT-2], Sf is the slope of the energy line [1] and S0 is the river 
bed slope [1]. The basic assumptions used to derive this system are a one-dimensional 
flow, a hydrostatic pressure distribution and a flow direction towards the lowest 
elevated neighbouring cell (Chow, 1959). The Saint-Venant equations cannot be solved 
analytically and should be approximated numerically. Simplifications can be made with 
respect to the momentum equation (5.3), the three terms of equation (5.2) are generally 
of the same order of magnitude and can not be omitted (Moussa and Bocquillon, 
1996a). In equation (5.3), term (IV) represents the local inertia term, term (V) represents 
the convective inertia term, term (VI) represents the pressure differential term and term 
(VII) accounts for the friction and bed slopes. Various wave models can be constructed 
depending on which of these four terms are used (Grijsen and Vreugdenhil, 1976; 
Vreugdenhil, 1989): 
•  kinematic wave (VII) 
•  diffusion wave (VI and VII) 
•  steady dynamic wave (V, VI and VII) 
•  gravity wave (IV, V and VI) 
•  dynamical wave (IV, V, VI and VII) 

A kinematic wave model for overland and channel flow can be obtained by means of 
storage routing. This method has been used in chapter 3 to model overland and channel 
flow [equation (3.8)]. A more general form of this equation is 

(5.4) mVkQ =  

where Q [L3T-1] is defined as the output from a reservoir with capacity V [L3] and lag 
constant k [T-1] and m is a dimensionless parameter. If m = 1, the system is linear [see 
equation (3.8)]. Storage routing can be done in a lumped way (1 reservoir) or in a 
distributed way (a number of reservoirs). 
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The mathematical description of channel flow in river basin models usually implies a 
formulation for flood routing. Flood routing is defined as a mathematical procedure for 
predicting the changing magnitude, speed and shape of a flood wave as a function of 
time at one or more points along a river or stream. The river discharges water from sub-
basins with an extent of at least the appropriate model scale to sub-basins downstream 
or directly to the basin outlet. Flood routing in rivers is a classical subject for which 
many methods of different levels of complexity are available. Besides the one-
dimensional formulations mentioned, more complex developments include multibranch 
models (e.g. Estrela and Quintas, 1994) and detailed 2D models (e.g. Vreugdenhil and 
Wijbenga, 1982). Flood routing can be classified as either lumped or distributed. The 
Muskingum method (McCarthy, 1938) is an example of a lumped, kinematic wave-type 
routing method. The Muskingum-Cunge method (Cunge, 1969) is an example of a 
distributed, diffusion wave-type method. The first method describes only the 
displacement of a flood wave, while the second method comprises attenuation as well. 

Moussa and Bocquillon (1996a) have developed a quantitative method to identify the 
appropriate flood routing method for a specific river (stretch) with its own 
characteristics. Their method defines for a specific threshold (e.g. 5 %) different river 
wave type zones (e.g. kinematic, diffusion) as a function of two dimensionless numbers: 
the Froude number F0

2 that characterises the unperturbed flow regime and T+ that 
characterises the wave period in relation to wave damping time 
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where ω0 [T] is the wave period and the subscript 0 indicates equilibrium conditions. 
The values for the variables in equation (5.5) and the corresponding dimensionless 
numbers for the main river stretch and a representative tributary in the Meuse basin are 
given in Table 5.5. The combinations of these dimensionless numbers and the river 
wave type zones assuming a threshold of 5 % are shown in Figure 5.20.  

Table 5.5 Variables and dimensionless numbers for main river stretch and tributary in Meuse basin. 

Variable/ number Unit Main river  Tributary 
v0 m/s 0.5 0.5 
g m/s2 10 10 
h0 m 2 0.5 
ω0 day 10 5 
Sf0 - 0.0004 0.002 
T+ - 86.4 864 
F0

2 - 0.0125 0.05 
 

Both for the main river and the tributary, the kinematic wave model can be used, 
although this finding is not convincing for the main river stretch. Other studies (Todini, 
1991; Moussa and Bocquillon, 1996a) came to similar conclusions, namely that in most 
practical applications the inertia terms in equation (5.3) (IV and V) can be neglected and 
the diffusion wave or kinematic wave equation can be applied. This result is dependent 
on scale, because the variables of equation (5.5) depend partly on scale (e.g. ω0). 
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Figure 5.20 River wave type dependent on T+ and F0

2 assuming a threshold of 5 %. The cases for the 
main river and a representative tributary are illustrated. 

Subsurface storm flow (macropore flow) 
There are only a few hydrological response models which contain a separate macropore 
flow component (Diermanse, 2001). Germann and Beven (1986) proposed to use the 
kinematic wave approximation for one-dimensional, unsteady, vertical macropore flow. 
The continuity equation and the Germann-Beven relation are as follows 
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where θm is the volumetric macropore water content [1], qm is the specific macropore 
discharge [LT-1], z is the vertical dimension, Sm is a sink/source term representing 
interactions with the soil matrix system [T-1] and am [LT-1] and bm [1] are empirically 
derived constants. Because of the unfamiliarity with macropore flow in general and the 
difficulty to determine parameters am and bm for the specific case of equation (5.7), 
subsurface storm flow is often not explicitly modelled or equations (5.6) and (5.7) are 
approximated (e.g. by the storage routing method). 

Subsurface flow 
Subsurface flow of water through porous media is modelled as laminar flow and can be 
described by the continuity equation and the Buckingham-Darcy equation 
(Buckingham, 1907) for one-dimensional, unsteady, vertical flow 
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where θ is the volumetric water content [1], q is the specific discharge [LT-1], Ssub is a 
sink/source term representing interactions with external processes like precipitation, 
evapotranspiration and discharge [T-1], KH is the hydraulic conductivity [LT-1] and ψ is 
the pressure head for saturated flow (ψ≥0) and the tension head for unsaturated flow 
(ψ<0). It should be mentioned that the hydraulic head is defined as H = z+ψ. The 
combination of equation (5.8) and (5.9) in a general three-dimensional form is called the 
Richards equation (Richards, 1931). For saturated flow, the value of ψ equals the 
distance to the groundwater table assuming that the pressure distribution is hydrostatic. 
For unsaturated flow, the value of ψ depends on θ and thus on the type of soil. The 
models most frequently used to describe the relationship between ψ and θ for different 
kinds of soils are the empirical power function relations proposed by Brooks and Corey 
(1964), Campbell (1974) and Van Genuchten (1980). They have developed power 
function relationships for KH(θ) as well. Equation (5.8) and (5.9) should be solved 
through application of numerical solution techniques, which requires large amounts of 
data and computational power. Therefore, often simplified equations are employed such 
as the Dupuit equations for unconfined, steady state saturated subsurface flow and the 
storage routing equation (3.8) for saturated and unsaturated subsurface flow. 

The infiltration of water into the soil determines the fraction of water subject to 
infiltration or saturation excess overland flow on the one hand and the fraction subject 
to subsurface flow on the other hand. Infiltration can also be described by equation (5.8) 
and (5.9) given Ssub and the initial conditions. Because of the complexity of these 
equations, simplified empirical and approximate models have been developed. 
Additionally, rainfall excess models which lump all losses (infiltration, depression 
storage, interception) are used. Empirical infiltration models generally relate infiltration 
rate to elapsed time modified by certain soil properties. The three most common 
empirical equations have been developed by Kostiakov (1932), Horton (1940) and 
Holtan (1961). Approximate theory-based models include those from Green-Ampt 
(1911) and Philip (1957). Rainfall excess models include index models (e.g. constant 
loss rate) and the SCS method from equation (2.46). 

Several infiltration model comparisons have been conducted in the past. Chen et al. 
(1994a; b) compared the results of the spatially horizontally averaged Richards equation 
(SHARE) and the averaged Green-Ampt model with the results from a three-
dimensional finite difference model of Richards equation for unsaturated flow. They 
found a very good agreement between the averaged Green-Ampt model and the three-
dimensional model, while the SHARE model provided results applicable only when 
fluctuations in soil parameters are small with respect to their mean values. Mbagwu 
(1995) compared the results of the Kostiakov, two modified Kostiakov, the Philip and 
two modified Philip infiltration models with experimental data for highly permeable 
sandy soils in Southeast Nigeria. He found that the modified Kostiakov models and one 
modified Philip model agreed very well with observed data. Although these 
comparisons have been done for small scales, they identified the attractiveness of 
relatively simple empirical and approximate theory-based infiltration models. Chen et 
al. (1994b) advocated the use of simple formulations like Green-Ampt in large-scale 
models, such as atmospheric meso-scale models (10-60 km). Obviously, the findings 
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from these comparisons can not be extrapolated to all geographical areas, objectives and 
scales, but at least the comparisons did not contradict the application of more simple 
models to describe infiltration and subsurface flow. 

5.5 Summary and conclusions 
The dominant processes in flood generation have been derived from literature and can 
be divided in primary and secondary flood generating processes. Primary processes are, 
besides precipitation, infiltration excess overland flow, saturation excess overland flow 
and subsurface storm flow. Secondary processes are processes important for the initial 
conditions preceding a flooding event and are evapotranspiration and subsurface flow in 
the soil matrix. The key variables related to these dominant processes have been derived 
on a qualitative basis and consist of climate and river basin variables. Dominant climate 
variables are precipitation, temperature and evapotranspiration and dominant river basin 
variables are elevation, soil type (texture, parent material) and land use type. 

Scale features of climate variables have been discussed in chapter 4. The spatial scales 
of the river basin variables have been dealt with in this chapter; it has been assumed that 
the variables are time-independent. The appropriate spatial scale of each key variable is 
assumed to be equal to a fraction of the spatial correlation length of each variable. The 
fraction was determined on the basis of relationships between statistics and scale and an 
accepted error in the estimation of the statistic of 10 %. This procedure has been 
described in chapter 2 and applied to the climate variables in chapter 4 and resulted in 
an appropriate spatial scale for precipitation of about 20 km. The application to the river 
basin variables revealed appropriate spatial scales for elevation, soil and land use of 
respectively 0.1, 5.3 and 3.3 km. The appropriate model scale is determined by 
multiplying the appropriate variable scales with their associated weights. The weights 
are based on SCS curve number method relationships between the peak discharge and 
some specific parameters like slope and curve number. The values of these parameters 
are dependent on the scale of each key variable. The resulting appropriate model scale is 
about 10 km, implying 225-250 model cells in an appropriate model of the Meuse basin 
meant to assess the impact of climate change on river flooding. 

Appropriate formulations related to these appropriate scales have been derived from 
literature and some rough estimations. Formulations of importance were those related to 
evapotranspiration, surface flow and subsurface (storm) flow. The Penman-Monteith 
formulation for potential evapotranspiration is able to estimate evaporation and 
transpiration for the full spatial and temporal ranges (crop to basin, day to long-term 
annual average), however this formulation requires measurement of various variables 
among which the radiation balance and wind speed. If these data are not available, 
simplifications such as the Priestley-Taylor relation are recommended. The appropriate 
surface flow (overland and river flow) formulation have been determined on the basis of 
two dimensionless numbers. The kinematic wave model for one-dimensional surface 
flow can be used for the Meuse and its tributaries. Models for subsurface flow and 
infiltration have been evaluated and compared in literature, where it was found that 
simple formulations like Green-Ampt can be appropriately implemented in large-scale 
models (10-60 km). 



 

Chapter 6  

Impact of climate change on river flooding 

6.1 Introduction 
The importance of assessments of climate change impacts on river flooding has been 
illustrated in chapter 1. These assessments should be preferably done with appropriate 
models incorporating the key processes described with appropriate formulations at 
appropriate scales. The appropriate model components have been determined in chapter 
4 and 5 and will be implemented in an existing modelling framework to assess impacts 
of climate change on river flooding. Additionally, two other model complexities will be 
used to see the effect of model complexity on the model results. The climate and river 
basin data to be used in the impact assessment were described in chapter 4 and 5, 
however the climatic input with climate change requires additional actions and is 
extensively considered here. 

Temperature and evapotranspiration under current and changed climate conditions are 
considered in section 6.2. Precipitation under current and changed climate conditions 
modelled with a rainfall model is dealt with in section 6.3. The modelling framework 
and the implementation of appropriate model components is described in section 6.4. 
The results of the assessment of climate change impacts on river flooding are discussed 
in section 6.5 and finally the main results are summarised in section 6.6. 

6.2 Temperature and evapotranspiration 

6.2.1 Current and changed temperature 
Temperature is particularly important for evapotranspiration, but significantly affects 
snow melt and refreezing of liquid water as well. The appropriate spatial scale for 
temperature (~1000 km) was found to be much larger than the spatial scale of the 
Meuse basin (~150 km) (see chapter 4). Therefore, one temperature series can be used 
as input into a river basin model and consequently General Circulation Model (GCM) 
simulated temperature can directly be employed (spatial scale of about 300 km). The 
temperature should only be corrected for elevation differences, because it can decrease 
considerably with elevation (more than 5 °C/ km). 

The temperature data were described in chapter 4. Observed temperature from 12 
stations for the period 1967-1996 is used to obtain areally averaged (over the Meuse 
basin) temperature for the current climate. Modelled temperature from the HadCM3 
GCM for the current (1961-1990) and changed (2070-2099) climate is used to estimate 
average daily changes in temperature with climate change. This is illustrated in Figure 
6.1, where the smoothed annual cycle of the daily observed temperature, the HadCM3 
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simulated temperature for current and changed climate and the difference between 
HadCM3 simulated temperature for changed and current climate is given. The observed 
annual temperature cycle is very well simulated by the HadCM3 model, while the other 
GCMs and Regional Climate Models (RCMs) did this considerably worse. The annual 
cycle of daily differences between current and changed temperature has been added to 
the observed temperature series to obtain a 30-year temperature series with climate 
change. The HadCM3 simulated temperature with climate change has not been directly 
used, because of the relation between observed temperature and evapotranspiration 
utilised to derive evapotranspiration with climate change. 
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Figure 6.1 Smoothed annual cycle of daily observed temperature, HadCM3 simulated temperature for 

current (1XCO2) and changed (2XCO2) climate and difference between HadCM3 
simulated temperature for changed and current climate (2XCO2-1XCO2). 

6.2.2 Current and changed evapotranspiration 
The appropriate spatial scale for potential evapotranspiration (~200 km) has about the 
same magnitude as the spatial scale of the Meuse basin (see chapter 4). Therefore, one 
evapotranspiration series can be used as input into a river basin model. The 
evapotranspiration data were described in chapter 4. Observed potential 
evapotranspiration from 5 stations for the period 1967-1996 is used to obtain areally 
averaged evapotranspiration for the current climate. The change in potential 
evapotranspiration is obtained as a function of the day-dependent temperature change 
from 6.2.1. For that, a relation of Brandsma (1995) is used describing the relative 
change in monthly evapotranspiration for different temperature changes. The relative 
change in monthly evapotranspiration for a temperature increase of 3 °C is given in 
Figure 6.2. Also shown is a fitted curve of the relative daily evapotranspiration change 
for a temperature increase of 3 °C. This curve has been used to estimate for a given 
temperature change the average daily evapotranspiration changes by simple scaling (e.g. 
a temperature increase of 4.5 °C for a day in February gives approximately a 22.5 % 
change in evapotranspiration instead of 15 % with a 3 °C temperature increase). Finally, 
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these relative changes in evapotranspiration have been multiplied with the observed 
series to obtain a 30-year evapotranspiration series with climate change. The obtained 
30-year temperature and evapotranspiration series with climate change are both based 
on observed series and thus are correlated in a similar way as observed in chapter 4. 
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Figure 6.2 Monthly scale and fitted daily scale change in evapotranspiration in % for a temperature 

increase of 3 °C. 

6.3 Rainfall: space-time random cascade model 

6.3.1 Introduction 
The generation of rainfall for the current and changed climate, to be used as input into a 
river basin model, is less straightforward than the generation of temperature and 
evapotranspiration, because the appropriate spatial scale of precipitation is much 
smaller (~20 km) than for temperature and evapotranspiration. GCMs and RCMs have a 
spatial resolution of about 300 km and 50 km respectively and therefore they are not 
able to provide rainfall input at an appropriate spatial scale. Moreover, RCM time series 
generally have an insufficient length in the context of flood frequency analysis. 
Therefore, other, more statistical downscaling approaches are needed as mentioned in 
chapter 1. The main approaches were factor, regression, classification, re-sampling and 
conditional methods. Comparisons between these different methods do not agree about 
which method to choose (e.g. Wilby and Wigley, 1997; Kidson and Thompson, 1998; 
Murphy, 1999) as discussed in chapter 1. Factor methods are seriously deficient in 
physical consistency and can not represent changes in spatial and temporal correlation. 
Re-sampling methods are able to reproduce current climate well, but are not preferable 
in climate change issues, in particular with respect to extreme events which have never 
been observed. A similar reasoning applies to regression methods, for which the 
regression equations have not been proven to be valid for the climate change situation. 
Here, classification and conditional methods are supposed to be most suitable for 
downscaling the GCM and RCM generated climate to the appropriate spatial scale. A 
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conditional method (stochastic rainfall model) will be used here, because of its ability to 
generate multiple realisations that characterise the stochastic behaviour of rainfall. 

The stochastic rainfall model should at least be able to reproduce the following statistics 
at the appropriate scale (20 km): 
•  mean and variability 
•  occurrence of dry and wet days 
•  transition probabilities between different rainfall states 
•  spatial and temporal correlation behaviour 
•  extreme values 
These spatial and temporal requirements automatically exclude application of temporal 
rainfall models such as Markov chains and truncated negative binomial distributions 
(Chapman, 1997) or the generalised Pareto distribution model and the random pulse 
Bartlett-Lewis gamma model (Cameron et al., 2000). Space-time stochastic rainfall 
models are required instead. 

Two general approaches are available for modelling space-time rainfall. The first 
approach focuses on the mathematical theory of cluster point processes to reproduce the 
hierarchical spatial and temporal organisations exhibited by observations (e.g. Waymire 
et al., 1984; Kavvas et al.., 1987). The main difficulties with this approach are the 
parameter estimation and the inability to fully describe the statistical structure of rainfall 
over a large range of scales. These two difficulties can be avoided by using the second 
approach of space-time rainfall modelling. This involves the use of certain scale 
invariant features seen in measured rainfall fields. Most of the modelling efforts in this 
respect are based on the theory of multiplicative random cascades (Lovejoy and 
Schertzer, 1990; Gupta and Waymire, 1993). These cascades have their conceptual basis 
in turbulence theory, where a cascade of turbulent eddies is seen as transferring kinetic 
energy from a large energy scale progressively to smaller dissipation scales. In rainfall, 
the analogous situation is to disaggregate the total mass of rainfall in a hierarchical 
manner, such that an area of higher intensity is embedded in larger areas of lower 
intensity, which are, in turn, part of even larger structures of even lower rainfall 
intensity (Jothityangkoon et al., 2000). Continuous and discrete random cascade models 
have been developed. Here, the discrete form of Over and Gupta (1996) has been used 
for two reasons. First, a discrete form is able to represent non-rainy areas and second, it 
can be appropriately adapted in rainfall-runoff modelling where a discrete partitioning 
of sub-basins exists. 

6.3.2 Space-time rainfall model 
The random cascade model consists of a temporal rainfall model for the whole region 
and a spatial model for the disaggregation of this rainfall to the appropriate scale. The 
two models are described below. 

Temporal rainfall model 
The temporal rainfall model consists of a first-order discrete Markov chain determining 
rainfall occurrence and a truncated two-parameter gamma distribution describing 
rainfall amount. Markov chains have been frequently used in the past to model daily 
rainfall occurrence (Gabriel and Neumann, 1962; Moon et al., 1994; Jimoh and 
Webster, 1996). Compared to more traditional time-series models [autoregressive 
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moving average (ARMA) models] they have the advantage that they can handle zero-
rainfall. The first-order discrete Markov chain is a stochastic process which describes 
the occurrence of daily rainfall as belonging to a number of discrete states; the zero-
rainfall state and a number of states defined on the basis of the rainfall amount. The 
probability of the rainfall on any given day belonging to a specified state is conditional 
on the rainfall state of the previous day. Therefore, the first-order Markov chain can be 
characterised by a NxN state transition matrix with elements pij as described by 
equation (2.24). This first-order, N-state Markov chain can be used to generate a 
sequence of daily rainfall states. 

The rainfall amount belonging to one of the non-zero rainfall states is generated from a 
truncated form of the two-parameter gamma distribution [see equation (2.15)], which 
has proven to be appropriate for the description of non-zero, spatially averaged daily 
rainfall (see chapter 4). The parameters of this distribution can be estimated from 
spatially averaged rainfall data and they can possibly vary throughout the year. 
Truncated gamma distributions are constructed for each of the non-zero rainfall states. 
Knowing the lower and upper limits of the rainfall amounts for each state, the 
probability weight between these limits can be estimated. The truncated gamma 
distribution for each state is then obtained by dividing the full gamma distribution by 
the corresponding estimated probability weight (Jothityangkoon et al., 2000). 

Spatial rainfall model 
The spatial disaggregation of the daily temporal rainfall series is achieved using the 
discrete random cascade approach as proposed by Over and Gupta (1996). A summary 
of their approach, also given by Jothityangkoon et al. (2000), follows here. 

The construction of a discrete random cascade begins with a rainfall volume over a two-
dimensional (d = 2) area that was simulated with the temporal rainfall model. This 
volume is successively divided into b equal parts (b = 2d) at each step, and during each 
subdivision the volume obtained at the previous disaggregation step is distributed into 
the b subdivisions by multiplication by a set of ‘cascade generators’ W, as shown for 
two arbitrary steps in Figure 6.3. At the first step, the volume for the total area is 
subdivided into b = 4 subareas denoted by ∆i

1, i = 1, …, 4. At the second step, each of 
the above subareas is further subdivided into b = 4 further subareas (∆i

2, i = 1, …, 16). 
This subdivision is continued down the scale, leading to bn subareas (∆i

n, i = 1, …, bn) at 
the nth step. If the initial intensity is P0 and L0 is the scale of the total area, then with 
Figure 6.3, the volume Vn(∆i

n) in the subareas at the nth step of subdivision is given by 

(6.1) ( ) i
j

n
j

nd
n

i
n WbLPV 100 =

− ∏=∆  

where each j, i represents the subarea along the path to the nth step subarea. The 
multipliers W are random cascade generators with the constraints that they are 
nonnegative and their average is 1, as follows from the mass conservation law. The 
generated precipitation fields are isotropic, i.e. its correlation lengths do not depend on 
wind direction. 
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Figure 6.3 Illustration of two steps (n = 2) of rainfall volume subdivision in the random cascade model 

with cascade generators W0, W1, W2. 

Over and Gupta (1994; 1996) proposed the so-called beta-lognormal model for the 
generation of the cascade generators. This model considers W as a composite generator 
W = BY, where B is drawn from the beta model and Y is drawn from the lognormal 
model. The beta model partitions the region into sets with and without rain and the 
lognormal model assigns rainfall amounts for each subdivision. The probability 
distribution of W = BY for an arbitrary subarea and step of subdivision is as follows 

(6.2) 
( )

( ) βσσββ

β

−+−

−

====

−==

bbYbBYWP

bWP
Xb )(

10
2/ln 2  

where X is the standard normal random variate and β and σ are parameters. Over and 
Gupta (1994; 1996) proposed that these parameters can be estimated by using the so-
called Mandelbrot-Kahane-Peyriere (MKP) function, named after Mandelbrot (1974) 
and Kahane and Peyriere (1976). The MKP function, denoted by χ(q), is defined as the 
slope of the scaling relationship of the qth ensemble moment of the random 
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precipitation field with respect to the level of subdivision n. The qth ensemble moment 
for scale ratio λn = L0/Ln (= 2n in this two-dimensional case) M(λn, q) is as follows 

(6.3) ( ) ( )[ ]∑ ∆=
=

nb

i

q
n

i
nn VqM

1
,λ  

The scaling behaviour of M(λn, q) with λn can be investigated with the following 
relationship 

(6.4) ( ) [ ] ( )q
nn qM τλλ =,  

where τ(q) is the slope of the log-log relationship between M(λn, q) and λn for a specific 
exponent q. The estimator of the MKP function χ(q) is then equal to τ(q)/d, also if λn is 
not a multiple of 2 and thus n is a noninteger (Jothityangkoon et al., 2000). Over and 
Gupta (1996) theoretically derived an expression for χ(q) for the beta-lognormal model 

(6.5) ( ) ( )( ) ( )[ ]( )qqbqqn −+−−= 22 2/ln11 σβχ  

Next, equation (6.5) can be matched with the estimated τ(q)/d to derive β and σ2. 
Therefore, Over and Gupta (1996) used the first and second derivatives of τ(q) with 
respect to q to obtain 

(6.6) ( ) ( ) ( ) ( )






 −






+−= 12
2

ln1 21 qbdq σβτ  

(6.7) ( ) ( ) ( )bdq ln22 στ =  

Both τ(1) (q) and τ(2) (q) can be derived from the empirical plots of τ(q) vs. q, usually at q 
= 1, however Jothityangkoon et al. (2000) have used q = 2 with good results. Finally, 
equations (6.6) and (6.7) are combined to express the cascade parameters β and σ2 in 
terms of τ(1) (q) and τ(2) (q) 
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6.3.3 Parameter estimation and generation of synthetic fields 
The rainfall data were described in chapter 4. Observed rainfall from 39 stations for the 
period 1970-1999 is used to estimate the parameters of the temporal and spatial rainfall 
model for the current climate. Modelled rainfall from 3 GCMs and 2 RCMs for various 
periods is used to estimate changes in the parameters of the temporal model with 
climate change and the 2 RCMs are used to estimate changes in the parameters of the 
spatial model with climate change. 
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Parameter estimation for temporal model 
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Figure 6.4 Transition probabilities (p00, p11, p01 and p10) of areally averaged observed precipitation 

as a function of month. 
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Figure 6.5 Wet day average and standard deviation of areally averaged observed precipitation as a 

function of month. 

Four rainfall states are considered (N = 4): P ≤ 0.1 mm/day (p1), 0.1 < P ≤ 1 mm/day 
(p2), 1 < P ≤ 4 mm/day (p3) and P > 4 mm/day (p4). These limits have been determined 
on the basis of approximately equal probabilities (0.25) that rainfall on an arbitrary day 
belongs to one of these states. The transition probabilities of the first-order, four-state 
discrete Markov chain pij are estimated from the areally averaged observed rainfall 
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series for the current climate and changes in these probabilities with climate change are 
estimated from the 3 GCMs and 2 RCMs. The transition probabilities are assumed to be 
time-invariant as supported by Figure 6.4, where the transition probabilities for two 
states (P ≤ 0.1 mm/day and P > 0.1 mm/day) for each month are given. 

The wet day (P > 0.1 mm/day) rainfall amounts are used to estimate the parameters (αg 
and βg) of the gamma-distribution [see equation (2.15)] for the current and changed 
climate. These parameters are also assumed to be constant throughout the year as 
supported by Figure 6.5, where the wet day average and standard deviation for each 
month are given. The parameters of the temporal rainfall model are summarised in 
Table 6.1. 

Table 6.1 Parameters of the temporal rainfall model for current and changed climate. 

 Current climate Changed climate 

αg 0.59 0.59 
βg 5.10 6.65 
p11 0.18 0.25 
p21 0.04 0.05 
p31 0.02 0.02 
p41 0.01 0.01 
p12 0.05 0.06 
p22 0.09 0.08 
p32 0.05 0.04 
p42 0.03 0.03 
p13 0.03 0.03 
p23 0.05 0.04 
p33 0.16 0.12 
p43 0.05 0.04 
p14 0.01 0.01 
p24 0.02 0.02 
p34 0.05 0.04 
p44 0.16 0.15 
 

Parameter estimation for spatial model 
The parameter estimation for the spatial model involves three steps: the estimation of 
the qth ensemble moments M(λn, q) as a function of scale ratio λn, the estimation of the 
slope τ(q) of the log-log relationship between M(λn, q) and λn for a specific exponent q 
and the estimation of the cascade parameters β and σ2. These steps are described below. 

Figure 6.6 shows an example of the qth statistical moments M(λn, q) as a function of 
scale ratio λn for q in the range 0-4.0 (also noninteger values) for a given observed day. 
Therefore, all rainfall data for that day were used and aggregated in different manners 
(e.g. 1, 4, 9, 16, 36, 64 cells). This was done for all days of the 1970-1999 period. Next, 
for each exponent q and day of the estimation period straight-line regressions were 
fitted with log-log scales and the slope τ(q) could be estimated. Figure 6.7 shows 
examples of the estimated slopes τ(q) as a function of q for 12 arbitrary days for 
observed winter, observed summer, HadRM2 simulated current climate and HIRHAM4 
simulated current climate. 
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Figure 6.6 Estimated qth statistical moments M(λn, q) as a function of scale ratio λn for a given 

observed day. 
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Figure 6.7 Estimated slopes τ(q) as a function of q for a) 12 (arbitrary) observed winter days, b) 12 

observed summer days, c) 12 days in HadRM2 for current climate, d) 12 days in 
HIRHAM4 for current climate. 
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Finally, the cascade parameters β and σ2 were estimated for each day using the first and 
second derivative of τ(q) at q = 2. The use of q = 2 can be questioned, but 
Jothityangkoon et al. (2000) came to the conclusion that this value can be favoured over 
q = 1 used by others (e.g. Over and Gupta, 1996). The cascade parameters β and σ2 as a 
function of areally averaged rainfall intensity P0 (over the whole region) are given in 
Figure 6.8 and Figure 6.9 for observed rainfall and HadRM2 and HIRHAM4 simulated 
rainfall for current and changed climate for all considered days. These figures show a 
dependence of the cascade parameters on average rainfall intensity, in particular for 
observed (point) rainfall. This feature has been found by Jothityangkoon et al. (2000) as 
well, in contrast to Over and Gupta (1996). The relations between the cascade 
parameters and average rainfall intensity have been analytically expressed by empirical 
functions 

(6.10) 
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where f1, f2, f3, f4 and f5 are constants which have been obtained by least square 
optimisation [analogous to Jothityangkoon et al. (2000)]. The cascade parameters were 
assumed to be homogeneous over the Meuse basin and stationary in time following 
Jothityangkoon et al. (2000). They found for a larger and much more variable region 
relatively space and time invariant cascade parameters as well. The constants from 
equations (6.10) and (6.11) are given in Table 6.2 for the current climate (from observed 
rainfall) and for the changed climate. The constants for changed climate conditions have 
been derived by using the relative differences between the HadRM2 and HIRHAM4 
simulated constants for the current and changed climate and the observed constants. 

Table 6.2 Parameters of the spatial rainfall model for current and changed climate. 

 Current climate Changed climate 

f1 0.18 0.20 
f2 0.42 0.41 
f3 -0.074 -0.071 
f4 -0.12 -0.11 
f5 -2.50 -2.56 
 

If observed rainfall exhibits strong spatial gradients in average rainfall, a deterministic 
multiplier can be added to W [equation (6.2)] to account for these gradients (see 
Jothityangkoon et al., 2000). However, Figure 6.10 shows no clear spatial patterns in 
average rainfall and therefore no deterministic generator has been used. 
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Figure 6.8 Cascade parameter β as a function of areally averaged rainfall in mm/day for a) observed 

rainfall, b) HadRM2 for current climate, c) HadRM2 for changed climate, d) HIRHAM4 
for current climate, e) HIRHAM4 for changed climate. 
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Figure 6.9 Cascade parameter σ2 as a function of areally averaged rainfall in mm/day for a) observed 

rainfall, b) HadRM2 for current climate, c) HadRM2 for changed climate, d) HIRHAM4 
for current climate, e) HIRHAM4 for changed climate. 
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Figure 6.10 Average rainfall in mm year-1 for Thiessen polygons in the Meuse area. A Thiessen 

polygon is based on the assumption that for any point in the river basin, rainfall is equal to 
the observed rainfall at the closest rain gauge. 

Generation of synthetic rainfall fields 
The generation of synthetic rainfall fields consists of two main steps. First, the 
generation of a regionally averaged rainfall time series using the first-order four-state 
Markov chain and the two-parameter truncated gamma distribution. Second, for each 
day of the time series, the disaggregation of the daily averaged rainfall using the 
stochastic random cascade model. 

The temporal rainfall simulation is straightforward. Depending on the starting state, the 
subsequent state is generated on the basis of the appropriate transition probabilities. 
Then, depending on the generated state, the truncated gamma distribution is used to 
generate the rainfall amount. These steps are repeated for each time step in the 
simulation period. 

The random cascade model works by progressively subdividing a 320 km × 320 km 
region over four successive levels down to the appropriate scale of 20 km and, at each 
level, multiplying the rainfall volume estimated at the previous level by the stochastic 
cascade generator W = BY. In this way, 16 × 16 = 256 rainfall cells would be obtained. 
However, the majority of these cell lies outside the Meuse basin, because this basin does 
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not have a square shape, but rather an elongated shape. Therefore, rainfall is only 
generated for cells entirely or partly lying in the Meuse basin (at the 20 km scale) and 
for all cells at other disaggregation levels necessary to obtain the 20 km scale rainfall in 
the ‘Meuse basin cells’. The resulting 76 cells in the Meuse basin are illustrated in 
Figure 6.11. 

a) b)

 
Figure 6.11 Cell grid of random cascade model for the Meuse basin with a) projected on the Meuse 

basin with 15 sub-basins, b) resulting 76 model cells representing the Meuse basin. 

The random cascade model parameters β and σ2 are continuously updated on the basis 
of the P0 value at each level of disaggregation. This methodology of continuously 
updating was found to be better than using cascade parameters β and σ2 as a function of 
the (same) regionally averaged P0 value at each level of disaggregation, in particular in 
simulating rainfall variability and extreme rainfall (Jothityangkoon et al., 2000). 

6.3.4 Synthetic rainfall for current and changed climate 
The adequacy of the random cascade rainfall model is tested by comparing relevant 
statistics as mentioned in 6.3.1 of observed and simulated space-time rainfall series for 
current climate conditions. Subsequently, the relevant statistics of simulated and 
GCM/RCM simulated changed climate can be compared to assess the ability of the 
random cascade model to simulate precipitation with climate change at the appropriate 
scale. The influence of the stochasticity of the precipitation process is investigated by 
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performing for both current and changed climate conditions 5 realisations with the 
random cascade model keeping the parameters at a constant level. The influence of the 
outcomes of the 5 individual climate models is considered by performing 5 simulations 
for changed climate conditions with parameters in each simulation according to the 
individual climate models. 

Current climate 
b)a)

 
Figure 6.12 Precipitation fields associated with the 30-year maximum of daily precipitation averaged 

over the whole field in mm day-1 for the Meuse area obtained from a) point measurements 
shown through Thiessen polygons and b) the random cascade model for current climate. 
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Figure 6.13 Daily precipitation at the 20 km scale in mm day-1 during an arbitrary year (J = January,..,D 

= December) for a) an averaged observed series and b) a random cascade modelled series. 
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Figure 6.12 and Figure 6.13 give some idea of the ability of the model to simulate 
spatial and temporal rainfall patterns. In Figure 6.12, the precipitation fields associated 
with the 30-year maximum of daily precipitation averaged over the whole field are 
given. The pattern in Figure 6.12a represents point values, whereas the pattern in Figure 
6.12b represents areally mean values at the 20 km scale. The spatial patterns exhibit a 
similar variability, although general conclusions can not been drawn on the basis of just 
one, arbitrary extreme day. The temporal patterns in Figure 6.13 are at the same scale. 
These patterns do not show striking differences in behaviour, however a more thorough 
statistical analysis of the results should further assess the quality of the rainfall model. 
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Figure 6.14 Cumulative frequency distribution for non-zero precipitation (> 0.1 mm/day) at the 20 km 

scale for a) observed station series and modelled series for current climate and b) modelled 
series for current and changed climate. 

Therefore, Figure 6.14 shows the cumulative frequency distribution of non-zero daily 
precipitation for observed and modelled current and changed climate (one realisation). 
The observed precipitation is a little overestimated by the model in Figure 6.14a, but the 
distributions have a similar shape. Figure 6.14b shows a slight increase of precipitation 
with climate change, a feature simulated by the GCMs and RCMs as well. Figure 6.15 
gives the extreme value distributions of annual maximum daily precipitation at the 
appropriate scale (20 km) for observed ordered values (reduced from point to 20 km 
scale) and the minimum and maximum of 5 realisations of ordered modelled values. 
The observed annual maxima are even overestimated by the minima of the realisations 
for small return values (left-hand side of the figure), but are well simulated for larger 
return values which are in particular important with respect to river flooding. 

The relevant statistics for the observed and modelled climate by means of 5 realisations 
are summarised in Table 6.3. Besides the daily return values, also the 5-day, 8-day and 
10-day return values are given as they may be important for river flooding (see e.g. 
Diermanse, 2001). The results show that all statistics except the wet day frequency are 
well simulated. The underestimation of the wet day frequency by the model originates 
from the spatial disaggregation. Namely, the wet day frequency of the temporal areally 
averaged precipitation series is well simulated by the precipitation model, but during the 
disaggregation, the model gradually simulates too many dry days. This may be an 
artefact of the model and can be investigated in future, also because the reduction of the 
variability and return values is quite well simulated by the random cascade model. 
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Figure 6.15 Annual maximum precipitation in mm day-1 at the 20 km scale as a function of the reduced 

Gumbel variate and return period in years for reduced ordered station values (averaged over 
39 points) and the minimum and maximum of 5 realisations of ordered modelled values 
(averaged over 76 cells). 

Table 6.3 Daily precipitation statistics at the 20 km scale for observed and random cascade modelled 
current climate and GCM/ RCM modelled and random cascade modelled changed climate. 

 Current climate Changed climate Appropriate scale statistics 
(20 km)  Observed Modelled Diff. (%)

[A] 
GCMs/ 
RCMs

Modelled Diff. (%)
[B] 
 

Average mm 2.6 (2.7-2.9) +4/+12 2.9 (2.7-3.1) -7/+7
Standard deviation mm 5.0 (5.1-5.3) +2/+6 5.9 (5.7-6.1) -3/+3 
Wet day frequency - 0.63 (0.45-0.46) -29/-27 0.49 (0.38-0.40) -22/-18 
Spatial correlation length km 324 (332-349) +2/+8 389 (382-404) -2/+4 
Temporal correlation cf. lag-1 - 0.26 (0.23-0.25) -12/-4 0.23 (0.24-0.26) +4/+13 
20-year return value mm 57.5 (57.3-63.2) 0/+10 68.8 (67.8-77.6) -1/+13 
100-year return value mm 72.1 (70.6-78.7) -2/+9 84.8 (83.1-98.4) -2/+16 
5-day 100-year return value mm 130 (122-134) -6/+3 142 (138-157) -3/+11 
8-day 100-year return value mm 158 (152-161) -4/+2 172 (166-184) -3/+7 
10-day 100-year return value mm 174 (165-173) -5/-1 190 (182-206) -4/+8 
[A] difference in % between modelled and observed statistic. 
[B] difference in % between modelled and GCM/RCM predicted statistic. 

Changed climate 
The increase in extreme precipitation with climate change is illustrated is Figure 6.16, 
where the precipitation fields associated with the 30-year maximum of daily 
precipitation averaged over the whole field for current and changed climate conditions 
are given. This increase has also been considered in chapter 4 and is reasonably 
simulated by the random cascade model. A more complete picture of the behaviour of 
extreme values gives Figure 6.17, where the extreme value distributions of annual 
maximum daily precipitation at the appropriate scale for the minimum and maximum of 
5 realisations of ordered modelled values for current and changed climate are shown. 
The increase of extreme precipitation values with climate change is obvious. The 
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relevant statistics for the modelled changed climate by means of 5 realisations are 
summarised in Table 6.3 as well, together with the changes from observed as predicted 
by the GCMs and RCMs. The general trend, of a slight increase of average 
precipitation, and a considerable increase of variability and extreme values with climate 
change, is well reproduced by the random cascade model, although the increase of 
extreme values is somewhat exaggerated. 

a) b)

 
Figure 6.16 Precipitation fields associated with the 30-year maximum of daily precipitation averaged 

over the whole field in mm day-1 obtained from a) the random cascade model for current 
climate and b) the random cascade model for changed climate. 
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Figure 6.17 Annual maximum precipitation in mm day-1 at the 20 km scale as a function of the reduced 

Gumbel variate and return period in years for the minimum and maximum of 5 realisations 
of ordered modelled values (averaged over 76 cells) for current and changed climate. 
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6.4 River basin modelling: HBV model 

6.4.1 Introduction 
The appropriate model components, namely the appropriate processes, scales and 
formulations have been derived in chapter 5. The most important processes in the 
context of climate change impacts on river flooding were found to be precipitation, 
evapotranspiration, infiltration excess overland flow, saturation excess overland flow, 
subsurface storm flow, subsurface flow and river flow. The appropriate spatial model 
scale has been assessed at about 10 km with a corresponding temporal scale of 1 day. 
Surface flow can be appropriately modelled with diffusion or kinematic wave based 
methods, whereas subsurface flow at a 10-60 km scale can be simulated using 
simplified equations such as Green-Ampt. Potential evapotranspiration should be 
preferably calculated using the Penman-Monteith equation or the Priestley-Taylor 
formulation if not all the data are available. 

This brief summary of the components of an appropriate model already gives some 
directives about which kind of model can be used for implementation of these 
appropriate components. Three main categories of hydrological models have been 
considered in chapter 1, namely empirical, conceptual and physically-based models. 
Empirical models are based on mathematical equations which do not take into account 
the underlying physical processes and therefore are not useful for implementation of the 
appropriate model components. Physically-based models like SHE (Abbot et al., 1986) 
and IHDM (Beven et al., 1987), on the other hand, incorporate physical laws based on 
the conservation of mass, momentum and energy. The governing equations include a lot 
of parameters and must be solved numerically. The high amount of parameters may 
result in different parameter combinations giving equally good output performances, 
which is usually labelled as overparameterisation. Examples are given by Beven (1993) 
and Uhlenbrook et al. (1999), who got very good model performances for different 
parameter sets. The main solution is to use more data, either through direct 
measurements of parameters in the field or through measurement of intern state 
variables like soil moisture contents. Besides this overparameterisation effect, 
physically-based models generally incorporate too many processes and too complex 
formulations at a too detailed scale in the context of climate change and river flooding 
as revealed by the appropriate components found. Therefore, the so-called conceptual 
models seem to be an attractive alternative. These models are usually able to capture the 
dominating hydrological processes at the appropriate scale with accompanying 
formulations. The conceptual models can therefore be considered as a nice compromise 
between the need for simplicity on the one hand and the need for a firm physical basis 
on the other hand. A disadvantage may be that it is generally impossible to derive the 
model parameters directly from field measurements and therefore calibration techniques 
must be used (Refsgaard, 1996). Well-known conceptual models are the Stanford 
watershed model (Crawford and Linsley, 1966), the HBV model (Bergström and 
Forsman, 1973) and the Precipitation Runoff Modelling System – PRMS (Leavesley et 
al., 1983). 

The next step is to choose one of the available conceptual models for the 
implementation of the appropriate model concepts. Therefore, conceptual model 
intercomparisons may be used like the ones performed by Franchini and Pacciani (1991) 
for the STANFORD, SACRAMENTO, TANK, APIC, SSARR, XINANJIANG and 
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ARNO model and Ye et al. (1997) for the GSFB, IHACRES and LASCAM model. 
However, these intercomparisons do not encompass all important conceptual models 
and therefore the model intercomparison of Passchier (1996) has been used as primary 
directive for the choice of a model. He selected 5 ‘event’ (single runoff event) models 
and 10 continuous hydrological models out of 31 models for comparison on the basis of 
7 criteria (e.g. state of the art, application areas, level of complexity and detail). His 
research objective was to select models for rainfall-runoff modelling of the Rhine and 
Meuse basin with emphasis on 4 specific aims, namely land use impact modelling, 
climate change impact modelling, real-time flood forecasting and physically based flood 
frequency analysis. Besides these 4 aims, 10 evaluation criteria (e.g. reliability, 
scientific basis, scale, availability) have been used for all of the 31 models. Four 
continuous models (PRMS, SACRAMENTO, HBV and SWMM) and one event model 
(HEC-1) were evaluated as the best ones. These results and the results for the four 
specific research aims were used to select a few appropriate models for each of the four 
research aims. The HEC-1 and HBV model were found to be most appropriate for flood 
frequency analysis, the HBV and SLURP model for assessments of climate change 
impacts on peak discharges and the PRMS and SACRAMENTO model for assessments 
of climate change impacts on discharge regimes. It should be mentioned that HBV only 
performed poorly on the criterion availability, which means there are restrictions on its 
use and it is not available online.  

On the basis of this intercomparison and the fact that the model could be easily 
obtained, the HBV model of the Swedish Hydrological and Meteorological Institute has 
been chosen for implementation of the appropriate model concepts and for subsequently 
assessing the impact of climate change on river flooding. The dominating processes 
precipitation, evapotranspiration, infiltration excess overland flow, saturation excess 
overland flow, subsurface storm flow (the latter three summarised by a fast flow 
component), subsurface flow and river flow are represented in the model, several sub-
basins can be created to obtain the appropriate spatial scale and simulations can be done 
with different time steps. Moreover, the process formulations have approximately the 
same level of complexity as revealed being appropriate from the literature analysis. For 
example surface flow is simulated by storage routing (overland flow) and a modified 
version of Muskingum’s equations (river flow) implying a kinematic or diffusion wave 
type approach as recommended in section 5.4. An additional advantage of the HBV 
model is the large number of applications found world-wide. It has been applied in more 
than 30 countries including many countries in Europe and its applications cover basins 
in different climatological and geographical regions, ranging in size from less than 1 to 
more than 40 000 km2 (Bergström, 1995). 

6.4.2 Description of HBV model 
The HBV model is a conceptual model of river basin hydrology which simulates river 
discharge using precipitation, temperature and evapotranspiration as input. The model 
consists of a precipitation routine representing rainfall, snow accumulation and snow 
melt, a soil moisture routine determining actual evapotranspiration and overland and 
subsurface flow, a fast flow routine representing storm flow, a slow flow routine 
representing subsurface flow, a transformation routine for flow delay and attenuation 
and a routing routine for river flow. The model version used is the HBV96 model 
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(version 4.4) described in detail by SMHI (1999). The six model routines and their 
interactions are illustrated in Figure 6.18 for one sub-basin and are described below. 
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Figure 6.18 Schematisation of HBV model with six routines for one sub-basin. 

Precipitation routine 
Precipitation occurs as snowfall if the air temperature Ta [θ] is below a defined 
threshold temperature Tb [θ] and occurs as rainfall if Ta > Tb. Snowfall is added to the 
dry snow reservoir (within the snow pack) and rainfall is added to the free water 
reservoir, which represents the liquid water content of the snow pack. Interactions 
between these two components take place through snow melt Qm [LT-1] and refreezing 
Qr [LT-1] 
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(6.12) ( ) babamm TTTTCQ >−=  

(6.13) ( ) baabrmr TTTTCCQ <−=  

where Cm [LT-1θ-1] is the melting factor and Cr [1] is the refreezing factor. The free 
water reservoir content is at most equal to a specified fraction (0-1) of the water 
equivalent of the dry snow content. If this fraction is exceeded through rainfall or snow 
melt, the water becomes available for the soil moisture routine. 

Soil moisture routine 
The water from the precipitation routine Qp [LT-1] is divided into direct discharge, 
indirect discharge and evapotranspiration. The direct discharge Qd [LT-1] over land is 
determined by 

(6.14) 
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where Ssm [L] is the soil moisture depth, FC [L] is the capacity of the soil to hold water 
and ∆t [T] is the time step. The indirect discharge Qin [LT-1] through the soil layer is 
determined by the amount of infiltrated water (Qp-Qd) and the soil moisture content Ssm 
through a power relationship with parameter BHETA 
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The amount of water that does not run off is added to the soil moisture. The actual 
evapotranspiration ETa [LT-1] is defined as follows 

(6.16) 
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where LP [1] is a fraction between 0 and 1 and ETp is the potential evapotranspiration. 
The actual evapotranspiration is thus equal to the potential evapotranspiration when the 
actual soil moisture is above a specified threshold. 

Fast flow routine 
The direct and indirect discharge (Qd and Qin) are available for the fast and slow flow 
routines, where runoff delay is simulated through the use of two reservoirs. One 
reservoir represents storm flow (overland flow and interflow) and the other one 
represents subsurface flow (groundwater flow). The direct and indirect discharge 
percolate into the subsurface reservoir until the subsurface gets saturated and a specific 
threshold Qperc (LT-1) is exceeded, the redundant water flows into the storm flow 
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reservoir. The storm flow out of this (fast) reservoir Qf [LT-1] into the river network is 
defined as follows 

(6.17) ( )α+= 1
fff hkQ  

where kf [T-1] is a recession coefficient, hf [L] is the reservoir water depth and α [1] is a 
measure of non-linearity. The recession coefficient kf is determined by using α and two 
additional parameters kH and QH, representing respectively a recession coefficient and a 
high flow rate at a corresponding reservoir water depth hH 

(6.18) HHH hkQ =  

The high flow rate QH can be directly derived from observed average flow rate Qavg and 
average annual maximum flow rate Qmax (both in mm day-1) 

(6.19) maxQQQ avgH =  

The combination of equations (6.17), (6.18) and (6.19) with chosen α and kH finally 
gives recession coefficient kf. 

Slow flow routine 
The subsurface flow out of the slow reservoir Qs [LT-1] into the river network is given 
by the outflow of a linear reservoir 

(6.20) sss hkQ =  

where ks [T-1] is again a recession coefficient and hs [L] is the reservoir water depth. 

Transformation routine 
The total discharge Qt = Qf + Qs can be further transformed to get a proper shape of the 
hydrograph by using a transformation function. This transformation function is a simple 
filter technique with a triangular distribution of weights over a period MAXBAS [T]. 

Routing routine 
The resulting hydrograph Qt(t) serves as input into the river network. In the river, the 
water is routed downstream with a modified version of Muskingum’s equations (see 
section 5.4). The river is subdivided into a number of segments and each segment 
corresponds to a delay given by a parameter Lr [T]. The discharge downstream Qtd(t) of 
a segment depends on the discharge upstream of that segment at the same time step 
Qtu(t) and the discharge upstream and downstream at the preceding time step Qtu(t-∆t) 
and Qtd(t-∆t) as follows 

(6.21) ( ) ( ) ( ) ( )ttQCttQCtQCtQ tutdtutd ∆−+∆−+= 211  

where 
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and Dr [1] is a coefficient for wave attenuation. If Dr = 0, the shape of the hydrograph 
will not be changed and only a delay of the hydrograph will occur. 

Additional parameters and zones 
In addition to the parameters mentioned for the six model routines, several other 
parameters can be used such as lapse rate parameters for temperature, precipitation and 
evapotranspiration, forest dependent parameters and snow, lake and glacier parameters. 
Furthermore, sub-basins can contain different elevation zones with for each elevation 
zone different land use types (the most important are field and forest). Finally, 
simplifications such as long-term mean values for evapotranspiration corrected by the 
actual temperature can be used instead of measured evapotranspiration. 

6.4.3 Different model complexities: HBV-1, HBV-15 and HBV-118 
Different model complexities will be used to see the effect of model complexity on the 
model results. In this way, a verification of the appropriate model complexity found in 
chapter 4 and 5 can be made. The appropriate model requires 225-250 sub-basins as 
revealed in section 5.3. The realisation of the schematisation for the appropriate model 
(described below) finally resulted in 118 sub-basins (HBV-118). This number of sub-
basins is of the same order of magnitude as the one revealed in 5.3 and assumed to be 
sufficient for checking the appropriateness requirements of chapter 5. The HBV-118 
model is compared with a model consisting of only 1 sub-basin (HBV-1) and a model 
with 15 sub-basins (HBV-15) following a commonly used division into the main sub-
basins (RIZA, 2000). The three different schematisations are given in Figure 6.19. The 
realisation of the schematisation for HBV-118 is described below. 

 a) b) c)

 
Figure 6.19 Schematisations of the Meuse basin in a) HBV-1, b) HBV-15 and c) HBV-118. 
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The Meuse 1000m DEM described in 5.3.2 has been used to derive the 118 sub-basins 
employing the following procedure: 
1. Merging of the river network as depicted in Figure 6.19a and the Meuse 1000m 

DEM to obtain a DEM without unnatural pits due to the coarse resolution used 
2. Derivation of the flow direction for each DEM cell. The flow is assumed to be 

directed towards the lowest elevated neighbouring cell. 
3. Fixing of the outflow point for each of the 118 sub-basins assuring approximately 

equal sub-basin surface areas. The points should lie as much as possible at the 
confluence of two rivers or streams. The automatic generation of sub-basins 
causes an uncheckable number of sub-basins and can not be used. 

4. Use of the results of point 2. and 3. to generate 118 sub-basins. 
5. Adaptation of the sub-basin boundaries by hand to agree with the sub-basin 

boundaries of HBV-15 (as far as necessary). 

6.4.4 Parameter estimation and model experiments 
The HBV model has been frequently used in many countries for river basins of various 
sizes as mentioned in 6.4.1. In these studies, much experience in parameter estimation 
has been gained and this can be used here to derive the most important parameters and 
to identify reasonable ranges of parameter values. The studies used are summarised in 
Table 6.4, where some important features of each study are given. The parameter 
estimation consists of three steps: 
1. determination of key parameters for calibration 
2. sensitivity analysis with key parameters to obtain optimal parameter set for HBV-1 

and some sub-basins of HBV-15 
3. ‘regionalisation’ of these parameters to derive parameters for each sub-basin in 

HBV-15 and HBV-118. 
The three parameter estimation steps are described below. This sub-section ends with a 
description of the model experiments performed with HBV-1, HBV-15 and HBV-118. 

Table 6.4 HBV modelling studies. Surface area indicates area of the sub-basins in the case of 
distributed HBV versions (no. sub-basins > 1). 

Reference Application area 
(no. basins) 

No sub 
basins 

Surface area Calibration 
period 

Validation 
period 

No. of 
simulations

   km2    
Bergström, 1990 Sweden (1) 41 (0.3-35) 103 1981-1986 1987-1991  
Diermanse, 2001 Mosel, Germany(1) 1 [A] 27030 flood events  ~102-SA [B]

Harlin and Kung, 1992 Sweden (2) 1 1370-4483 18-20 years  ~103-MC[C]

Krysanova et al., 1999 Elbe, Germany (1) 1-44 (1-81) 103 1981-1983 1984-1989  
Lindström et al., 1997 Sweden (7-10) 1 174-5975 10 years 10 years  
Seibert, 1999 Sweden (11) 1 7-950 1981-1990  ~105-MC 
Uhlenbrook et al., 1999 Brugga, Ger. (1) 1 40 1975-1984  ~105-MC 
Velner, 2000 Ourthe, Belgium(1) 1 1597 1986-1996 1968-1986 ~102-SA 
[A] one parameter (FC) was ‘fully distributed’ into 27 103 different values (1 km2 scale), rainfall 

gauge density and rainfall averaging effect was assessed. 
[B] SA = sensitivity or similar analysis. 
[C] MC = Monte Carlo analysis. 
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Key parameters 
The most important and uncertain parameters occur in the soil moisture and the fast 
flow routine. The precipitation routine mainly contains snow parameters and therefore, 
because the Meuse is a rainfed river, default values can be used. This has also been 
concluded by Velner (2000), who calibrated a HBV model for a tributary of the Meuse 
river (the Ourthe, see Table 6.4). The slow flow routine will only contribute a small 
amount to flood volumes and values from e.g. Velner (2000) can be used. Parameter 
values (MAXBAS and Lr) for the transformation and routing routines can be easily 
derived from (hydrometric) data, if wave attenuation is assumed to be negligible (see 
chapter 5, parameter Dr = 0). The main parameters are FC, LP and BHETA in the soil 
moisture routine and α, kH and QH in the fast flow routine. Values and ranges of these 
parameters used in the studies from Table 6.4 and two additional studies are given in 
Table 6.5. For convenience, the most important parameters from the slow flow routine 
(Qperc and ks) are given in Table 6.5 as well. 

Table 6.5 Parameter values and ranges from the studies in Table 6.4, Killingtveit and Sælthun (1995), 
SMHI (1999) and HBV-1, HBV-15 and HBV-118. 

Reference FC LP BHETA α [D] kH [D] QH [D],[E] Qperc ks 

 mm - - - day-1 mm day-1 mm day-1 day-1 
Bergström, 1990 100-300 0.50-1.0 1.0-4.0  
Diermanse, 2001 0-580 0.80 3.0    0.6 0.01 
Harlin and Kung, 1992 50-274 0.73-1.0 1.0-5.9    0.6-2.1 0.0008-0.05 
Killingtveit and S., 1995 75-300 0.70-1.0 1.0-4.0    0.5-1.0 0.0005-0.002
Krysanova et al., 1999 220-391 0.70 2.0    1.0 0.005 
Seibert, 1999 50-500 0.30-1.0 1.0-6.0    0.0-3.0 0.001-0.15 
SMHI, 1999 [F] 200 0.9 2.0 1.0 0.17 3.0   
Uhlenbrook et al., 1999 100-550 0.30-1.0 1.0-5.0    0.0-4.0 0.00005-0.1 
Velner, 2000 180 0.66 1.8 1.1 0.10 3.4 0.4 0.023 
HBV-1 
(SA) 

200-500 0.2-0.8 1.0-3.0 0.1-
1.1

0.06-
0.11

   

HBV-15 
(SA) 

100-400 0.2-0.8 1.0-3.0 0.8-
1.1 

0.08-
0.15 

   

HBV-1 
(optimal values) 

340 0.34 1.0 0.7 0.074 2.22 0.4 0.02 

HBV-15 Lesse 253 0.65 1.5 1.1 0.095 3.02 0.4 0.02 
 Ourthe 180 0.71 1.5 1.1 0.12 3.27 0.4 0.02 
 Amblève 202 0.68 1.9 1.1 0.11 4.15 0.4 0.02 
 Vesdre 350 0.68 1.3 1.1 0.14 3.79 0.4 0.02 
(optimal values)         
HBV-15 
(regionalisation) 

180-384 0.28-
0.71 

1.0-2.3 0.2-
1.1 

0.01-
0.14 

1.69-4.30 0.4 0.02 

HBV-118 
(regionalisation) 

185-660 0.28-
0.71 

1.2-2.1 0.1-
1.9 

0.07-
0.17 

1.69-4.30 0.4-0.8 0.02 

[D] In the fast flow routine of HBV96  α, kH and QH are used, while in older versions of HBV one 
or more recession coefficients ki were directly used (without α). Therefore, comparisons 
between the fast flow routine parameters in both versions can not be made. 

[E] QH can be directly determined from measured discharges [equation (6.19)] and has not been 
calibrated. 

[F] Default values for HBV96. 
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Sensitivity analyses 
A sensitivity analysis is performed to assess the influence of individual (univariate) or 
multiple (multivariate) parameters on the output of the model (see 2.2.3). This can be 
used to determine the parameter set that generates optimal model results. Univariate 
sensitivity analysis involves varying the value of one parameter while the other 
parameters remain constant (at a default value). Multivariate sensitivity analysis should 
be used if a strong interdependence between key parameters exists. This involves 
varying two (bivariate) or more parameters keeping the other parameters at their default 
level. Obviously, it depends on the interrelations between the five key parameters FC, 
LP, BHETA, α and kH (QH is derived from measured data and is not calibrated), which 
kind of sensitivity analysis should be used. 

The HBV model equations from 6.4.2 can give information about possible 
interdependencies between the key parameters. From equations (6.14), (6.15) and (6.16) 
of the soil moisture routine and (6.17), (6.18) and (6.19) of the fast flow routine, it is 
clear that respectively parameters FC, LP and BHETA and α and kH are interdependent. 
Therefore, multiple sensitivity analyses for the parameters in the soil moisture and fast 
flow routine should be performed. Possible interdependencies between parameters of 
these routines should be checked. Table 6.5 has been used to determine the parameter 
ranges for the multiple sensitivity analyses (SA) for HBV-1. Additional univariate 
sensitivity analyses were done for four sub-basins of HBV-15 (Lesse, Ourthe, Amblève 
and Vesdre) with overall parameter ranges and values given in Table 6.5 as well. 

The optimality of the model output (discharge) is assessed in different ways, namely by 
applying the Nash-Sutcliffe efficiency coefficient R2 (Nash and Sutcliffe, 1970), the 
relative volume error RVE and the relative extreme value error REVE 
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where i is the time step, N is the total number of time steps, Q is the discharge, 
subscripts o and m means observed and modelled and RV(T) is the T-year return value. 
Furthermore, visual inspections of the observed and simulated hydrographs should 
always accompany model experiments. Since the soil moisture routine parameters 
particularly influence the discharge volume, the criteria for the multiple sensitivity 
analysis with FC, LP and BHETA are RVE and R2. On the other hand, the fast flow 
routine parameters particularly affect the shape of the hydrograph and extreme 
discharges and therefore R2 and REVE are used as criteria in the bivariate sensitivity 
analysis with α and kH. 
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Regionalisation 
The HBV-15 and HBV-118 models can not be calibrated in the same way as the HBV-1 
model, because additional observed discharges are available for four sub-basins and 
thus sensitivity analyses can only be done for these four sub-basins as described above. 
It is therefore necessary to determine the key parameters of the other sub-basins in an 
alternative way. The concept of ‘regionalisation’ is used for this purpose. This involves 
the use of relationships between key parameters and river basin characteristics (e.g. land 
use, soil type) to assess the parameter values for the remaining sub-basins. These 
relationships can be established by employing the calibrated parameters from the 
sensitivity analyses and the corresponding basin characteristics or using relationships 
from literature. Separate relationships for each key variable or for example Hydrological 
Response Units (HRUs) representing hydrologically similar areas (e.g. Kite and 
Kouwen, 1992) can be used for this purpose. The separate relationships for the five key 
parameters in HBV-15 are described in a general way below and applied in sub-section 
6.5.1. The regionalisation for seven key variables (additionally QH and Qperc) in HBV-
118 is described by Van der Wal (2001). He used one indicator based on the slope, the 
soil texture and the parent material (see chapter 5) of the sub-basin representing the 
reaction behaviour of the sub-basin to distribute the seven key parameters among the 
118 sub-basins. The resulting parameter ranges are given in Table 6.5. 

The soil moisture routine parameters FC, LP and BHETA are relatively scale 
independent (Bergström and Graham, 1998) and can be used at all covered scales 
(~100-20000 km2). This is in the same range as the scales in Bergström (1990). 
Parameter FC is the maximum capacity of the soil to hold water and is related to soil 
properties as the soil moisture content at field capacity and wilting point and the soil 
depth. Here, the FC from HBV-1 is distributed taking into account the calibrated FC 
values from the four sub-basins in HBV-15 using the volumetric soil moisture content at 
wilting point θw and the soil porosity φ 

(6.25) wFC θφ −~  

Parameter LP is the fraction of FC above which potential evapotranspiration occurs 
[equation (6.16)]. It is assumed to be dependent on the volumetric soil moisture content 
at wilting point θw and field capacity θf analogous to Baier and Roberston (1966) and on 
the soil porosity φ to account for the dependency of LP on FC 

(6.26) 
wf

wLP
θθ

θφ
−

−
~  

Parameter BHETA describes how the runoff coefficient increases as the maximum soil 
moisture content FC is approached. This parameter can be regarded more as an index of 
heterogeneity than a measure of soil properties (Bergström and Graham, 1998). This is 
because for low values runoff is gradually generated indicating heterogeneous 
conditions whereas for high values runoff is simultaneously generated implying 
homogeneous conditions. In general, this means for large sub-basins with much 
heterogeneity smaller values for BHETA than for small sub-basins with relatively little 
variability. Seibert (1999), on the other hand, found an increase of BHETA values with 
sub-basin area A, although his relation was weak. The former explanation (increasing 
BHETA values with decreasing area) will serve as a basis for a BHETA-area 
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relationship, because it is physically more plausible and has been formulated by the 
developer of the HBV model 

(6.27) 
A

BHETA 1~  

Parameter α is a measure of the non-linearity of the fast flow process. Small sub-basins 
with steep hills and low permeable soils will generally result in more non-linearity in 
the fast flow mechanisms than large sub-basins with flat terrains and high permeable 
soils. The calibrated α values were found to be most dependent on slope S0 rather than 
on surface area or soil type 

(6.28) 0~ Sα  

Parameter kH is a recession coefficient at high flow rate QH and can be approximated by 
estimating the recession coefficient from an observed hydrograph at flow rate QH 
(SMHI, 1999). This parameter is influenced by similar factors as α and calibrated kH 
values were found to be most dependent on slope S0 as well 

(6.29) 0~ SkH  

Model experiments 
The impact of climate change on river flooding is assessed with HBV-1, HBV-15 and 
HBV-118 in four steps. These four steps are the calibration described above, the 
validation, the simulation under current climate conditions with the random cascade 
model and the simulation under changed climate conditions with the random cascade 
model. The climatic input for the four steps is summarised in Table 6.6 (see also section 
6.2 and 6.3). Information about the model experiments with HBV-1, HBV-15 and 
HBV-118 is given in Table 6.7. 

Table 6.6 Climatic input for model experiments. 

 Precipitation Temperature Evapotranspiration 

Calibration Stations (39 stations) Stations (12) Stations (8) 
 1970-1984 1970-1984 1970-1984 
Validation Stations (39) Stations (12) Stations (8) 
 1985-1996 1985-1996 1985-1996 
Current climate Random Cascade Model (76) Stations (12) Stations (8) 
 30 years 1967-1996 1967-1996 
 5 realisations [A]   
Changed climate Random Cascade Model (76) Stations+change (12) Stations+change (8) 
 30 years 1967-1996 1967-1996 
 10 realisations [B]   
[A] 5 realisations using the same parameters from Table 6.1 and Table 6.2 for HBV-1 and HBV-

15, 1 realisation for HBV-118. 
[B] 5 realisations using the same parameters from Table 6.1 and Table 6.2 and 5 realisations using 

parameters derived from each model separately (3 GCMs and 2 RCMs) for HBV-1 and HBV-
15, 1 realisation for HBV-118. 
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Table 6.7 Model experiments with HBV-1, HBV-15 and HBV-118. 

 HBV-1 HBV-15 HBV-118 

Calibration Discharge (1) Discharge (5) Discharge (5) 
  Regionalisation Regionalisation 
 1970-1984 1970-1984 1970-1984 
Validation Discharge (1) Discharge (5) Discharge (5) 
 1985-1996 1985-1996 1985-1996 
Current climate Discharge (1) Discharge (5/15) Discharge (5/118) 
 30 years 30 years 30 years 
 5 realisations 5 realisations 1 realisation 
Changed climate Discharge (1) Discharge (5/15) Discharge (5/118) 
 30 years 30 years 30 years 
 5 realisations 10 realisations 1 realisation 
 

The temperature and evapotranspiration data are averaged to obtain one temperature and 
one evapotranspiration series (see section 6.2). The point precipitation series from 
stations are interpolated using Thiessen polygons. These areally averaged precipitation 
series are combined with the HBV-1, HBV-15 and HBV-118 schematisations from 
Figure 6.19 to obtain areally averaged precipitation series for respectively 1, 15 and 118 
sub-basins. The areally averaged random cascade precipitation series are combined with 
the HBV-1, HBV-15 and HBV-118 schematisations in the same way. 

6.5 Climate change impact on river flooding in the Meuse basin 

6.5.1 Calibration  
The results of the multiple sensitivity analyses with HBV-1 for parameters FC, LP and 
BHETA of the soil moisture routine are given in Figure 6.20 and for parameters α and 
kH of the fast flow routine are given in Figure 6.21. The combination of the pictures at 
the left-hand and right-hand side in Figure 6.20 gives the optimal values for the soil 
moisture routine parameters by requiring that RVE should be less than 1 % and R2 
should be as high as possible. The optimum values are poorly defined and are given in 
Table 6.5. A similar approach has been conducted for the fast flow routine parameters 
by combining R2 as a function of α (and associated optimal kH from Figure 6.21a) and 
REVE as a function of α(kH) in Figure 6.21b. Here, the requirements are that REVE 
should be less than 10 % and R2 should be as high as possible. The resulting α and kH 
values are given in Table 6.5 as well. During these sensitivity analyses, the values of the 
other (less important) parameters were kept at pre-determined values based on 
univariate sensitivity analyses and the studies mentioned in Table 6.4. The calibrated 
parameter values are generally within the ranges from other studies and seems to be 
realistic. The value for the parameter LP is low, which means that potential 
evapotranspiration occurs already under relatively dry conditions. Although this could 
yield an overestimation of the total evapotranspiration, observed and simulated water 
balances compared favourably. 
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Similar sensitivities of the three criteria [equations (6.22)-(6.24)] with respect to the 
different parameters were found for the 4 sub-basins (Lesse, Ourthe, Amblève and 
Vesdre) and are not shown here. The optimal values of the soil moisture and fast flow 
routine parameters derived from the univariate sensitivity analyses for these sub-basins 
are summarised in Table 6.5. 

The optimal parameter values for HBV-1 and the 4 sub-basins of HBV-15 together with 
θw, θf and φ-values based on soil texture (Maidment, 1993), S0 values based on elevation 
data and A values have been used to quantify the regionalisation relationships from 
equations (6.25)-(6.29). Finally, these equations have been used to determine the 
parameters values for the remaining 11 sub-basins. The ranges of these resulting 
parameter values are given in Table 6.5 as well. 
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Figure 6.20 Sensitivity analyses with FC and LP for BHETA (β) = 1, 2 and 3 for HBV-1. The left-hand 

side shows R2 as a function of FC, LP and BHETA (β) and the right hand side shows RVE 
as a function of FC, LP and BHETA (β). 
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Figure 6.21 Sensitivity analysis with α and kH for HBV-1 with a) R2 as a function of α and kH and b) R2 

as a function of α (kH ) and REVE as a function of α(kH). 
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Figure 6.22 Observed and simulated discharge at Borgharen in m3s-1 for 1984 for a) HBV-1, b) HBV-15 

and c) HBV-118. 
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Next, the results obtained with the chosen parameter values for HBV-1, HBV-15 and 
HBV-118 can be compared. Therefore, Figure 6.22 shows the daily discharge at 
Borgharen for one arbitrary year with a considerable peak for the observed and HBV-1, 
HBV-15 and HBV-118 simulated situation. The observed hydrograph is simulated 
realistically by all three models, although the performance becomes somewhat better 
with an increasing number of sub-basins. Figure 6.23 and Figure 6.24 give respectively 
the cumulative frequency distribution of daily discharges and the extreme value 
distribution of annual extremes for the observed and simulated series. Most striking 
feature is the good simulation of the extreme value distribution by HBV-15 and HBV-
118, but also by HBV-1. The resulting criteria R2, RVE [by means of average] and 
REVE [by means of RV(100)] together with the standard deviation of daily discharges 
are summarised in Table 6.8. This table mainly confirms the findings from the visual 
inspection; the good simulation of average discharge behaviour illustrated by high R2 
values and the good simulation of extremes (difference is negligible for HBV-15 and 
HBV-118). 
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Figure 6.23 Cumulative frequency distribution P(X<x) for daily discharges up to 1500 m3s-1 for 

observed and HBV-1, HBV-15 and HBV-118 simulated series for 1970-1984. 
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Figure 6.24 Gumbel plot for annual maximum discharges in m3s-1 for the period 1970-1984 as observed 

and simulated with HBV-1, HBV-15 and HBV-118. Regression lines for observed (solid), 
HBV-1 simulated (dotted), HBV-15 simulated (dashed) and HBV-118 simulated (dashed-
dotted) are shown as well. 

Table 6.8 Results from calibration, validation and simulations with rainfall model for current and 
changed climate. 

  R2 Average  Standard deviation RV(100)  

   Value Diff. [A] Value Diff. [A] Value Diff. [A] 
  - m3s-1 % m3s-1 % m3s-1 % 
Calibration Observed  222 252 2929  
 HBV-1 0.85 222 0 251 0 2719  -7 
 HBV-15 0.87 231 +4 270 +7 2977  +2 
 HBV-118 0.88 224 +1 255 +1 2896 -1 
Validation Observed  235  300  3703  
 HBV-1 0.91 238 +1 307 +2 3817  +3 
 HBV-15 0.92 244 +4 324 +8 4008  +8 
 HBV-118 0.93 239 +2 303 +1 3772 +2 

Observed  229  275  3292  
HBV-1  (232-266) +1/+16 (265-296) -4/+8 (2553-3236)  -22/-2 
HBV-15  (237-271) +3/+18 (275-306) 0/+11 (2621-3226)  -20/-2 

Synthetic 
current 
climate 

HBV-118  244 +6 264 -4 2958 -10 
HBV-1  (204-264) -12/-1 (253-334) -5/+13 (2426-3565)  -5/+10 
HBV-15  (207-266) -13/-2 (260-344) -5/+12 (2591-3661)  -1/+13 

Synthetic 
changed 
climate HBV-118  258 +6 314 +19 3354 +13 
Uncertainty HBV-15  (208-244) -12/-10 (270-299) -2/-2 (2551-3530) -3/+9 
[A] diff. means difference in % with respect to the corresponding observed (calibration, validation, 

synthetic current climate) or simulated (synthetic changed climate) value. 
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6.5.2 Validation 
In the validation, the parameter values are kept the same as in the calibration, but the 
simulations are repeated with another, independent precipitation, temperature, 
evapotranspiration and discharge series (see Table 6.6 and Table 6.7). The results are 
shown in Figure 6.25, Figure 6.26, Figure 6.27, Figure 6.28 and Table 6.8. Figure 6.25 
shows the daily discharge at Borgharen for 16 months with two considerable peaks for 
the observed and HBV-15 and HBV-118 simulated situation. The observed hydrograph 
is simulated realistically by the two models, even better than in the calibration. Figure 
6.26 shows the daily discharge at Martinrive (Amblève) and Tabreux (Vesdre) for the 
same 16 months for HBV-15 to illustrate also the good performance for sub-basins. 
Figure 6.27 and Figure 6.28 give respectively the cumulative frequency distribution of 
daily discharges and the extreme value distribution of annual extremes for the observed 
and simulated series. Again the extreme value distribution is well simulated by all 
models. The resulting criteria R2, RVE and REVE and the standard deviation of daily 
discharges at Borgharen are summarised in Table 6.8. Additionally, Table 6.9 gives R2, 
RVE and REVE for the calibration and validation of HBV-15 and HBV-118 for the four 
sub-basins. The differences between average discharge behaviour of the sub-basins 
modelled by HBV-15 and HBV-118 are small. Extreme discharges are generally better 
simulated by HBV-118 in the calibration, where in the validation HBV-15 is somewhat 
better. 
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Figure 6.25 Observed and simulated discharge at Borgharen in m3s-1 for December 1993-March 1995 

for a) HBV-15 and b) HBV-118. 
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Figure 6.26 Observed and HBV-15 simulated discharge in m3s-1 for December 1993-March 1995 for a) 

Amblève (R2 = 0.87) and b) Vesdre (R2 = 0.76). 
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Figure 6.27 Cumulative frequency distribution P(X<x) for daily discharges up to 1500 m3s-1 for 

observed and HBV-1, HBV-15 and HBV-118 simulated series for 1985-1996. 
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Table 6.9 Results for tributaries from calibration and validation of HBV-15 and HBV-118. 

   R2 Average  RV(100)  

    Value Diff. [A] Value Diff. [A] 
   - m3s-1 % m3s-1 % 
Calibration Lesse Observed 17.3 250  
  HBV-15 0.88 17.3 0 225 -10 
  HBV-118 0.88 17.6 +1 254 +2 
 Ourthe Observed  22.1  393  
  HBV-15 0.80 22.3 +1 354 -10 
  HBV-118 0.87 22.4 +1 378 -4 
 Amblève Observed  18.7  351  
  HBV-15 0.80 18.8 +1 311 -12 
  HBV-118 0.78 19.2 +3 343 -2 
 Vesdre Observed  10.1  244  
  HBV-15 0.80 10.0 0 148 -39 
  HBV-118 0.77 10.3 +2 187 -23 
Validation Lesse Observed 18.1 467  
  HBV-15 0.89 19.3 +7 358 -23 
  HBV-118 0.91 19.7 +9 368 -21 
 Ourthe Observed  22.4  486  
  HBV-15 0.86 23.3 +4 472 -3 
  HBV-118 0.92 23.3 +4 505 +4 
 Amblève Observed  18.6  439  
  HBV-15 0.87 19.5 +5 430 -2 
  HBV-118 0.84 19.9 +7 468 +7 
 Vesdre Observed  10.5  202  
  HBV-15 0.76 10.1 -4 204 +1 
  HBV-118 0.76 10.5 0 238 +18 
[A] diff. means difference in % with respect to the corresponding observed value. 

0

500

1000

1500

2000

2500

3000

3500

-2 -1 0 1 2 3 4

Reduced Gumbel variate

D
is

ch
ar

ge
 (m

3 /s
)

Observed
HBV-1
HBV-15
HBV-118

1 2 5 10 20 50

Return period (years)

 
Figure 6.28 Gumbel plot for annual maximum discharges in m3s-1 for the period 1985-1996 as observed 

and simulated with HBV-1, HBV-15 and HBV-118. Regression lines for observed (solid), 
HBV-1 simulated (dotted), HBV-15 simulated (dashed) and HBV-118 simulated (dashed-
dotted) are shown as well. 
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6.5.3 Synthetic current climate 
The results of the random cascade model for the current climate are used as input in 
HBV-1, HBV-15 and HBV-118 to simulate daily discharge series for the current 
climate (see Table 6.7). Figure 6.29 shows the cumulative frequency distribution of 
daily discharges for the observed series and 5 realisations with HBV-1 and HBV-15 and 
1 realisation with HBV-118 for current climate. The only realisation with HBV-118 is 
the maximum one in terms of HBV-15 extreme discharges. Figure 6.30 gives the 
extreme value distribution of annual extremes for the observed and simulated series. 
The 5 realisations are quantified in Table 6.8 by means of the average and standard 
deviation of daily discharges and the 100-year return value RV(100). 
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Figure 6.29 Cumulative frequency distribution P(X<x) for daily discharges up to 1500 m3s-1 for 30 

years under current climate conditions for a) observed series and 5 precipitation realisations 
with HBV-1, b) observed series and 5 precipitation realisations with HBV-15 and c) 
observed series and 1 precipitation realisation with HBV-118. 

The general trend from these figures and table is a small overestimation of average 
discharges and discharge variability and a considerable underestimation of extreme 
discharges in the case of HBV-1 and HBV-15. HBV-118 slightly underestimates the 
discharge variability and underestimates extreme discharges with respect to HBV-15. 
However, a general tendency for HBV-118 is hard to identify, because only one 
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precipitation realisation has been used for HBV-118. The small overestimation of 
average discharge behaviour can be explained by the small overestimation of average 
precipitation behaviour by the random cascade model (see Table 6.3, on average +8 % 
for mean precipitation and + 4 % for the standard deviation of precipitation). However, 
the underestimation of extreme discharges by HBV-1 and HBV-15 can not be explained 
by the statistics of the precipitation input. The random cascade model rather 
overestimates than underestimates extreme precipitation. 
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Figure 6.30 Gumbel plot for annual maximum discharges in m3s-1 for a 30 year period as observed 

(1970-1999) and simulated with 5 precipitation realisations for HBV-1 and HBV-15 and 1 
precipitation realisation for HBV-118 under current climate conditions. Only the minimum 
and maximum of the 5 HBV-1 and HBV-15 realisations are shown. Regression lines for 
observed (solid), HBV-1 simulated (dotted), HBV-15 simulated (dashed) and HBV-118 
simulated (grey dashed-dotted) are given as well. 

The main cause of this underestimation can be found in the transformation of observed 
precipitation at the point scale and simulated precipitation at the 20 km scale to areally 
averaged precipitation at the basin (HBV-1, ~150 km) or sub-basin scale (HBV-15, ~40 
km and HBV-118, ~13 km). This is illustrated in Table 6.10 where the important 
statistics from Table 6.3 at the HBV-15 and HBV-118 sub-basin scales for the observed 
and simulated situation (1 realisation with REVE ≈ -20 %) are summarised. In 
particular, the 5-day, 8-day and 10-day 100-year precipitation return values are 
underestimated by the rainfall model at the HBV-15 (by about 20 %) and HBV-118 (by 
about 15 %) sub-basin scale, but also 1-day extreme values and variability are 
underestimated compared to the 20 km scale (where the rainfall model mainly 
overestimates these statistics). This underestimation of generated extreme precipitation 
at the sub-basin scale is in fact an overestimation of observed extreme precipitation at 
the sub-basin scale. Namely, the observed 5-day, 8-day and 10-day 100-year 
precipitation return values in Table 6.10 are approximately the corresponding observed 
point values, from which the multi-day extreme statistics in Table 6.3 have been 
derived. 



Impact of climate change on river flooding 167

The overestimation of observed precipitation variability and extreme behaviour is 
explained by the fact that for a lot of sub-basins, in particular for HBV-118, only one or 
two stations are used as precipitation input into the model. This results in observed input 
at the point scale compared to simulated input at the (correct) 20 km scale. Observed 
precipitation is considered as areally averaged precipitation, but is actually point 
precipitation. Consequently, observed precipitation shows too much variability and 
extreme behaviour, which will have implications for the parameter estimation during 
calibration. Parameters are estimated under too variable and extreme conditions, which 
may have consequences for simulations under changed conditions (e.g. land use and 
climate change). Unfortunately, insufficient precipitation stations are available to assess 
the areally averaged sub-basin scale precipitation in a right way and therefore this 
overestimation has occurred. The overestimation of precipitation variability and extreme 
behaviour seems to be common practice, because in most rainfall-runoff modelling 
studies station precipitation is used as input in stead of areally averaged precipitation at 
the sub-basin scale. 

Table 6.10 Daily precipitation statistics at the sub-basin scale for observed and random cascade 
modelled current climate. 

 HBV-15 HBV-118   Sub-basin scale statistics 
 Observed Modelled Diff. (%)

[A] 
Observed Modelled Diff. (%)

[A] 

Average mm 2.6 2.7 +4 2.6 2.7 +4 
Standard deviation mm 4.8 4.6 -4 5.0 4.9 -2 
Wet day frequency - 0.57 0.59 +3 0.53 0.51 -4 
Temporal correlation cf. lag-1 - 0.31 0.29 -4 0.28 0.27 -4 
20-year return value mm 53.6 51.7 -4 57.6 55.4 -4 
100-year return value mm 66.3 63.7 -4 71.5 68.4 -4 
5-day 100-year return value mm 136 109 -20 139 117 -16 
8-day 100-year return value mm 173 139 -19 174 147 -15 
10-day 100-year return value mm 193 158 -18 194 164 -15 
[A] difference in % between modelled and observed statistic. 

The difference between HBV-15 and HBV-118 in Table 6.10 (-20 % and –15 %) can be 
explained by the fact that modelled precipitation is less averaged when transformed to 
the HBV-118 scale than when transformed to the HBV-15 scale. However, the 
difference in discharge 100-year return values for the HBV-15 and HBV-118 model 
using the same (maximum) precipitation realisation (respectively -2 % and –10 % in 
Table 6.8) can not be explained by these differences in precipitation at the sub-basin 
scale. This difference may be caused by differences in regionalisation techniques and 
related differences in parameter values (e.g. FC values in Table 6.5 cover a much 
broader range in the case of HBV-118). In this way, it gives some information about 
uncertainties due to parameter estimation, but it does not give information about 
uncertainties due to differences in processes incorporated or process formulations. 
Nevertheless, the calibration and validation results from HBV-15 and HBV-118 were 
comparable. Figure 6.30 shows a large difference (about 20 %) between the minimum 
and maximum of the modelled realisations, which illustrates the large impact of the 
stochasticity of the precipitation process. 
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6.5.4 Synthetic changed climate 
The climate change situation will be considered by comparing the results obtained with 
input from the rainfall model for current and changed climate conditions. Figure 6.31 
shows the cumulative frequency distribution of daily discharges for 5 realisations with 
HBV-1 and HBV-15 and 1 realisation with HBV-118 for the current and changed 
climate. Figure 6.32 gives the 20-year and 100-year return values for the current and 
changed climate. Quantitative figures are shown in Table 6.8. 
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Figure 6.31 Cumulative frequency distribution P(X<x) for daily discharges up to 1500 m3s-1 under 

current and changed climate conditions for 5 realisations of 30 years for a) HBV-1 and b) 
HBV-15 and 1 realisation of 30 years for c) HBV-118. 

The general trend is a small decrease of the average discharge and a small increase of 
the discharge variability and extreme discharges with climate change. The decrease of 
the average discharge has to do with the slight increase of modelled average 
precipitation with climate change (about 5 %, see Table 6.3) combined with the 
considerable increase of (potential) evapotranspiration (on average about 15 %, see 
Figure 6.2). The increase in discharge variability and extreme discharges is a result of 
the considerable increase of precipitation variability and extreme precipitation (10-20 
%), but is less than would be expected on the basis of the changes in precipitation 
behaviour. There are even precipitation realisations which have resulted in a small 
decrease of the extreme value distribution for annual discharges derived from both 
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HBV-1 and HBV-15. As a consequence of this, the variability in extreme values has 
increased with respect to the simulations for current climate conditions. The HBV-118 
model shows a similar increase in 20-year and 100-year return values with climate 
change as the corresponding realisations for HBV-1 and HBV-15. 
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Figure 6.32 Discharge 20-year (RV20) and 100-year (RV100) return values in m3s-1 from a 30 year 

period as simulated with 5 precipitation realisations for HBV-1 and HBV-15 and 1 
precipitation realisation for HBV-118 under current and changed climate conditions. Only 
the minimum and maximum of the 5 HBV-1 and HBV-15 realisations are shown.  

6.5.5 Uncertainties 
The uncertainty in extreme discharges with climate change is caused by various sources 
of uncertainties of which the most important are: climatological input (precipitation, 
evapotranspiration), model structure, parameter values and extrapolation to large return 
periods. 

The uncertainty in precipitation variability and extreme precipitation was found to be 
large in chapter 4 (30-50 %). This uncertainty consisted of climate model errors, inter-
model uncertainties and an estimation of climate forcing uncertainties. The effect of 
inter-model uncertainties on extreme river discharges has been roughly assessed by 
using the results of each individual climate model for climate change conditions to 
assess a parameter set for the random cascade rainfall model. These parameter sets have 
been used to generate for each climate model one realisation which served as input into 
the HBV-15 model. The results are given in Figure 6.33, where the minimum and 
maximum of the 5 realisations of annual maximum discharges for a 30 year period are 
given. The results of Figure 6.32 for climate change conditions and HBV-15 are shown 
as well for comparison. These results can be regarded as uncertainties in extreme 
discharges due to the stochasticity of the precipitation process. It was found in Figure 
6.33 that these uncertainties are even larger than the uncertainties in extreme discharges 
due to inter-model uncertainties. The uncertainties due to individual climate model 
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errors are unimportant here, because the climate model results have only been used to 
derive relative changes in observed precipitation statistics. It can be expected that the 
uncertainty in extreme discharges due to climate forcing uncertainties is at least as large 
as the two uncertainties in Figure 6.33. 
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Figure 6.33 Gumbel plot for annual maximum discharges in m3s-1 for a 30 year period as simulated with 

5 precipitation realisations derived from the average of the 5 climate models and 5 
precipitation realisations derived from the 5 individual climate models under changed 
climate conditions for HBV-15. Only the minimum and maximum of each of the 5 
realisations are shown. Regression lines for the ‘realisations’ (dashed) and realisations from 
’individual climate models’ (dotted) are given as well. 

The differences between the results of HBV-1, HBV-15 and HBV-118 give some 
indication about uncertainties in extreme discharges due to uncertainties in model 
structure, although these differences are mainly scale related. Small differences between 
results of these different models have been found in this section (5-10 %) and therefore 
this uncertainty source seems to be relatively unimportant. 

The effect of different key parameter values on the results was investigated in the 
calibration phase of the model, but mainly using HBV-1 (see 6.5.1). In particular, 
variations of the parameters determining the fast runoff response (α and kH) can have 
significant consequences for extreme discharges. For example a 50 % change of α can 
result in approximately a 8 % change in the 100-year return value (see Figure 6.21). 
However, this reduction of uncertainty in parameters by the hydrological model (50 % 
to 8 %) is much larger than the reduction of uncertainty in precipitation statistics by the 
hydrological model (e.g. 15 % to 6 %), i.e. the model sensitivity to changes in 
parameters is much smaller than the sensitivity to changes in precipitation. The 
uncertainty in α and kH is estimated at 20 % resulting in a much smaller impact on the 
output uncertainty than for example the impact of precipitation uncertainty. 

The uncertainty in extreme discharges due to extrapolation can be roughly assessed by 
using the formulations described in 2.3.5. The uncertainty in the estimation of the 100-
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year return value is 20 % [one-sided, see equation (2.43)] using a 90% confidence 
interval and employing a 30-year series. The uncertainty is 25 % when using a 95% 
confidence interval. This uncertainty can only be reduced by employing longer time 
series as can be done for the observed series (about 90 years, 12 and 15 % uncertainty). 
This can not be performed with respect to the modelled series for current and changed 
climate, because the hydrological model needs to be calibrated with a sufficient number 
of precipitation series of sufficient length. In this respect, the 30-year series currently is 
the maximum simulation length which can be used without arriving at a too coarse 
spatial precipitation scale. Other extreme value distributions (GEV, Pearson type-III) 
may slightly reduce uncertainties due to extrapolation (see e.g. Gerretsen, 2001). 

Overall, the uncertainties in extreme discharges due to precipitation errors and 
extrapolation errors seem to be more important (respectively more than 20 % and about 
20 %) than uncertainties due to hydrological model errors and parameter estimation 
errors. These uncertainties should be quadratically summed, because of the general 
random character of the uncertainties resulting in an uncertainty of at least 30-40 %. 

6.6 Summary and conclusions 
One temperature and one evapotranspiration series have been used as input into the 
river basin model. Observed series have been employed for current climate conditions. 
Temperature differences between HadCM3 simulated current and changed climate and a 
relation between temperature change and evapotranspiration change have been taken to 
obtain temperature series respectively evapotranspiration series for changed climate 
conditions. 

Precipitation for the current and changed climate has been modelled with a random 
cascade rainfall model. This model consists of a temporal model for the whole region 
and a spatial model for the disaggregation of this rainfall to the appropriate scale (20 
km). The temporal model consists of a discrete first-order four-state Markov chain 
determining rainfall occurrence and a truncated two-parameter gamma distribution 
describing rainfall amount. The spatial disaggregation of the temporal rainfall series is 
done using a discrete random cascade approach with generators determined from a beta-
lognormal distribution. The parameters of these models were determined from observed 
and GCM and RCM modelled rainfall. All relevant rainfall statistics except wet day 
frequency for current and changed climate are well simulated by the random cascade 
model.  

An appropriate river basin model has been constructed by implementing the appropriate 
model components derived in chapter 5 into the existing modelling framework HBV. 
Additionally, two river basin models of differing complexities have been set up to 
evaluate the sensitivity of the model results to model complexity and to allow for a 
verification of the model appropriateness procedure. The supposedly appropriate model 
has 118 sub-basins (HBV-118) and the additional models have 1 and 15 sub-basin(s) 
(HBV-1 and HBV-15). The three models were calibrated and validated with equal data 
series (as far as possible). Generations of the rainfall model under current and changed 
climate conditions have been used to assess the climate change impacts. 

The average and extreme discharge behaviour at the basin outlet (Borgharen) is well 
reproduced by the three models in the calibration and validation, the results become 
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somewhat better with increasing model complexity. The differences between the 
average discharge behaviour of the sub-basins modelled by the two distributed models 
are small. Extreme discharges are generally better simulated by HBV-118 in the 
calibration, where in the validation HBV-15 is somewhat better. The model results with 
synthetic precipitation under current climate conditions show a small overestimation of 
average discharge behaviour and a considerable underestimation of extreme discharge 
behaviour. The underestimation of extreme discharges can not be explained by the 
statistics of the synthetic precipitation input, but is caused by the observed precipitation 
input at the sub-basin scale. In most cases, this precipitation is not an areally averaged 
quantity, but rather a point quantity resulting in an overestimation of observed 
precipitation variability and extreme behaviour at the sub-basin scale compared to the 
generated precipitation. This seems to be a very frequently occurring problem, which 
can be dealt with by increasing the density of precipitation stations in a river basin in an 
efficient manner. 

The general trend with climate change is a small decrease of the average discharge and 
a small increase of discharge variability and extreme discharges. The variability in 
extreme discharges for climate change conditions has increased with respect to the 
simulations for current climate conditions. This variability results both from the 
stochasticity of the precipitation process and the differences between the climate 
models. Other uncertainties include those related to the river basin model structure, the 
parameter values and the extrapolation to large return periods. Overall, it appeared that 
the uncertainties in extreme discharges due to precipitation errors and extrapolation 
errors are more important than uncertainties due to hydrological model errors and 
parameter estimation errors. The total uncertainty is estimated at 30-40 %. 
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Conclusions and discussion 

7.1 Conclusions 
In this section, the answers to the five research questions will be formulated. The 
research questions were related to dominant processes and variables (research question 
1), appropriate scales (research question 2), associated appropriate process formulations 
(research question 3), climate change (research question 4) and impacts of climate 
change on river flooding (research question 5). 

7.1.1 Dominant processes and variables 
Dominant climate variables have been considered in section 4.1 and were found to be 
precipitation, temperature and evapotranspiration. Dominant river basin processes have 
been derived from literature in section 5.2 and were infiltration and saturation excess 
overland flow, subsurface storm flow and subsurface flow in the soil matrix. The main 
associated variables are elevation, soil type and land use type. 

7.1.2 Appropriate spatial and temporal scales 
The appropriate spatial scale of each key variable was assumed to be equal to a fraction 
of the spatial correlation length of that variable. This fraction has been determined on 
the basis of relationships between statistics and scale accepting an error in the 
estimation of the statistic of 10 %, as described in section 2.3. This resulted in fractions 
varying between 0.20 and 0.25. The application to the climate variables in chapter 4 
resulted in an appropriate spatial scale for precipitation of 20 km with a temporal scale 
of 1 day. The application to the river basin variables in section 5.3 revealed appropriate 
spatial scales for elevation, soil and land use of respectively 0.1, 5.3 and 3.3 km. The 
appropriate model scale has been determined by multiplying the appropriate variable 
scales with their associated weights. The weights were based on SCS curve number 
method relationships between the peak discharge and some specific parameters. The 
values of these parameters are dependent on the scale of each key variable. The 
resulting appropriate model scale was about 10 km with a temporal scale of 1 day. 

In addition to this systematic scale analysis, the effects of spatial and temporal 
precipitation and model scales on peak discharges have been considered in chapter 3 by 
employing a simple stochastic rainfall model and a dimensionless river basin model. 
The resulting appropriate precipitation scales were assessed at 1-2 grid points/spatial 
correlation length and at most 1 time step/temporal correlation length. The appropriate 
model scales were estimated at 5-10 grid points/spatial correlation length and 7-10 time 
steps/temporal correlation length. The correlation lengths refer to precipitation. 
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7.1.3 Appropriate process formulations 
Appropriate formulations related to these appropriate scales have been derived from 
literature and some rough estimations in section 5.4. The formulations of importance 
were those related to evapotranspiration, surface flow and subsurface (storm) flow. 
Relatively simple formulations were found to be sufficient for this model objective and 
appropriate spatial scale. 

7.1.4 Climate change 
The climate change effect has been assessed by analysing and comparing data from 
stations, re-analyses, global climate models (GCMs) and regional climate models 
(RCMs) for Western Europe. Average precipitation values do not show significant 
changes with climate change (a doubling of carbon dioxide), while standard deviations 
increase by about 10 %. Extreme precipitation may increase with climate change by 
about 15-20 % and correlation lengths by about 30-40 %. The differences between 
climate models can be considerable, in particular with respect to extreme values and 
correlation lengths. The RCMs and the Australian GCM simulate extreme precipitation 
behaviour under current climate conditions very well, while the re-analyses 
underestimate and the British and Canadian GCMs overestimate extreme precipitation. 
Model errors and inter-model differences in the estimation of extreme precipitation with 
climate change can amount up to 50 %, which is significantly larger than the simulated 
change. The average predicted temperature increase with climate change is 3.7 °C (2.9-
4.7 °C). The temperature behaviour under current climate conditions is well simulated 
by the RCMs and the British GCM, but rather poorly by the Canadian and Australian 
GCM. The estimated uncertainty in average temperature with climate change is about 2-
3 °C, which is comparable with the simulated change. The average increase in potential 
evapotranspiration with climate change has been derived from a relationship between 
temperature changes and evapotranspiration changes and is about 15 % (20 % in winter 
and 10 % in summer). 

7.1.5 Impact of climate change on river flooding 
The impact of climate change on river flooding has been evaluated by using the climate 
change information described above and river basin models of different complexities. 
The climate change information on temperature and evapotranspiration could directly be 
used. Precipitation with climate change has been generated with a space-time random 
cascade rainfall model in an acceptable way. An appropriate river basin model has been 
constructed by implementing the appropriate model components derived before into an 
existing modelling framework (HBV). Additionally, two river basin models of differing 
complexities have been set up to evaluate the sensitivity of the model results to model 
complexity and to allow for a verification of the model appropriateness procedure. The 
appropriate model has 118 sub-basins (HBV-118) and an associated model scale of 
about 13 km. This model scale is of the same order of magnitude as the one revealed in 
the scale analysis (10 km) and assumed to be sufficient for checking the appropriateness 
requirements. The additional models have 1 and 15 sub-basin(s) (HBV-1 and HBV-15). 
The three models were calibrated and validated with equal data series (as far as 
possible). Generations of the rainfall model under current and changed climate 
conditions have been used to assess the climate change impacts.  
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The average and extreme discharge behaviour at the basin outlet (Borgharen) is well 
reproduced by the three models in the calibration and validation, the results become 
somewhat better with increasing model complexity. The differences between the 
average discharge behaviour of the sub-basins modelled by the two distributed models 
are small. The model results with synthetic precipitation under current climate 
conditions show a considerable underestimation of extreme discharge behaviour. The 
underestimation of extreme discharges is caused by the observed precipitation input at 
the sub-basin scale. In most cases, this precipitation is not an areally averaged quantity, 
but rather a point quantity resulting in an overestimation of observed precipitation 
variability and extreme behaviour at the sub-basin scale compared to the generated 
precipitation. This seems to be a very frequently occurring problem, which can be 
improved by increasing the density of precipitation stations in a river basin in an 
efficient manner. 

The general trend with climate change is a small decrease (~5 %) of the average 
discharge and a small increase (~5-10 %) of discharge variability and extreme 
discharges. The variability in extreme discharges for climate change conditions has 
increased with respect to the simulations for current climate conditions. This variability 
results both from the stochasticity of the precipitation process and the differences 
between the climate models. Other uncertainties include those related to the river basin 
model structure, the parameter values and the extrapolation to large return periods. 
Overall, it was found that the uncertainties in extreme discharges due to precipitation 
errors and extrapolation errors (both about 20 %) are more important than uncertainties 
due to hydrological model errors and parameter estimation errors (both less than 10 %). 

7.2 Discussion 

7.2.1 Appropriate modelling 
The appropriate spatial precipitation scale derived on the basis of precipitation data 
(chapter 4; 4-5 grid points/correlation length) is smaller than the one derived on the 
basis of model sensitivities to varying spatial precipitation scales (chapter 3; 1-2 grid 
points/correlation length). More confidence can be placed on the former appropriate 
scale, because it is derived directly from the data. The other one is estimated from 
model sensitivities assuming the model is correct. This adds substantial uncertainty to 
the assessment of appropriate scales. Therefore, the appropriate scales of the other key 
variables have been directly determined from data as well. Only for the integration of 
these appropriate variable scales, model sensitivities have been used, which is 
considered to be inevitable. 

The resulting appropriate model scale derived with the appropriateness procedure 
(chapter 5; 8-10 grid points/precipitation correlation length) is comparable with the one 
derived from model sensitivities to varying spatial model scales (chapter 3; 5-10 grid 
points/correlation length. This confirms, although roughly, the findings from the 
appropriateness procedure. Therefore, simulations with different river basin models 
have been performed to give additional information about the validity of the model 
appropriateness procedure and the sensitivity of model results to model complexity. In 
this way, an integrated approach of research objectives I and II has been achieved. 
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On the basis of the differences between the results of the three models in the calibration, 
validation and simulations under current climate conditions, it was found that HBV-118 
is complex enough to simulate discharge behaviour and in particular extreme discharge 
behaviour for a river basin like the Meuse. In particular in the calibration, the results 
became somewhat better with increasing model complexity. This can be explained by 
the fact that in a complex model more parameters can be tuned in such a way, that a 
good agreement with observations is obtained. In the validation, the parameters can not 
be adjusted and, as a consequence, the differences between the model results are less 
obvious. This may be because of the data used in HBV-118 are more dependent on the 
calibration and validation period than the smaller amount of data in HBV-15. Another 
explanation for the small differences is that no additional discharge series have been 
used in the calibration and validation of HBV-118 compared to HBV-15. Additional 
series could have improved the calibration and validation of HBV-118 and thus 
increased the differences with HBV-15. Finally, the small discrepancies between the 
models are not surprising given the small differences in spatial model scales for HBV-
15 and HBV-118 (37 km and 13 km). 

The consistency criterion has been used in this thesis to assess model appropriateness 
rather than the output uncertainty criterion. A consistent model is defined as a model 
with scales and formulations at a balanced level, neither too coarse nor too detailed with 
respect to each other. Considering this criterion, HBV-118 is indeed an appropriate 
model for the assessment of climate change impacts on river flooding, because the 
application of the model appropriateness procedure results in an approximately 
consistent model. The model results discussed above and the accompanying 
explanations confirm, although not convincingly, the results of the model 
appropriateness procedure. 

The observed precipitation input at the sub-basin scale was frequently found to be 
precipitation at the point scale instead of an areally averaged quantity. This is a common 
problem in hydrology since station precipitation is mostly used as input in rainfall-
runoff models. Insufficient precipitation stations are generally available to assess the 
areally averaged sub-basin scale precipitation in a right way. Moreover, the Thiessen 
method used is not an interpolation method, but attributes precipitation from the closest 
gauge to a specific point and thus results in point precipitation for areas amounting up to 
sub-basin scales. First, this can be improved by employing more sophisticated 
interpolation methods like inverse distance interpolation or kriging. Second, the density 
of precipitation stations in a river basin can be increased in an efficient manner or the 
length of the time series can be shortened causing other disadvantages such as an 
increase in extrapolation uncertainty. A third possibility to avoid the differences 
between observed and generated sub-basin scale precipitation is the generation of 
precipitation at a smaller scale compared to the 20 km scale. In this way, both observed 
and generated precipitation are at the wrong, small scale. As a consequence, parameters 
are erroneously estimated in the calibration and incorrectly used in the simulations 
under current and changed climate conditions. The main conclusion is that when 
precipitation is modelled at the appropriate precipitation scale, observed precipitation 
(preferably areally averaged) should at least be available at this scale for a proper 
calibration and validation. 
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7.2.2 Uncertainties 
The uncertainties in extreme discharges due to precipitation errors and extrapolation 
errors were found to be more important than uncertainties due to hydrological model 
errors and parameter estimation errors. It is therefore preferable to improve precipitation 
predictions with climate change and/ or decrease extrapolation errors by incorporating 
longer time series. The latter improvement will be difficult to obtain and therefore 
attention should be paid to the improvement of precipitation in climate models at the 
appropriate scale for hydrological impact assessment. However, this will only slightly 
reduce the total uncertainty, because of the remaining large extrapolation errors. 
Application of more complex hydrological models or parameter estimation techniques 
will probably not reduce the total uncertainty, before reductions in precipitation and 
extrapolation errors have been achieved. Obviously, for other research objectives, 
improvements in models and parameter estimation may have a much larger effect (e.g. 
flood forecasting in the short term). 

The acceptable error in the determination of appropriate scales has been rather 
arbitrarily set at 10 %. The sensitivity of appropriate scales to varying accepted errors 
can be substantial, as illustrated in chapter 4 for precipitation, resulting in varying 
model scales. This confirms the fact that the applied model appropriateness procedure 
can be viewed as a methodology to obtain a consistent model rather than a model with a 
specific maximal uncertainty. However, the output uncertainty can serve as an 
additional criterion for model appropriateness. This output uncertainty was found to be 
at least 30-40 %, mainly consisting of precipitation and extrapolation uncertainties. 
Thus, although the model is appropriate when considering its consistency, it is 
inappropriate when solely taking into account its output uncertainty and an arbitrary 
uncertainty criterion of 25 %. 

A limit on the accuracy of estimated extreme discharges is the amount of spatial and 
temporal data available. The spatial resolution of the data influences the model 
complexity to be employed and thus the accuracy of estimated flood frequencies. The 
temporal length of the data series imposes a limit on the accuracy of extrapolations to 
extreme values. These two data characteristics should be jointly viewed, because for 
example a long time series of precipitation at a too coarse spatial resolution will not 
serve as an appropriate input for the calibration and validation of a river basin model. 
Using synthetic precipitation at a finer, appropriate spatial resolution to assess flood 
frequencies will not completely solve this problem and will give a kind of apparent 
accuracy. This is because the parameters of the precipitation model are derived from 
observed precipitation statistics. Here, 39 stations with a daily precipitation time series 
of 30 years or more were available, where at least 76 stations are preferred. Some 
precipitation statistics can be reduced to a finer scale by means of the reduction 
functions. However, the parameters of the spatial precipitation model should be 
determined directly from precipitation data. Thus, the spatial resolution of the 
precipitation series for the calibration and validation was insufficient resulting in the 
differences found in chapter 6. Obviously, the spatial resolution could have been more 
appropriate if only time series of 15 years were adopted. Therefore, a not commonly 
used trade-off of the spatial and temporal accuracy should be made keeping the output 
uncertainty as small as possible. 
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7.2.3 Uncertainty and change 
The uncertainty in river flooding with climate change (over 40 %) is much larger than 
the change with respect to current climate conditions (less than 10 %). One would 
therefore argue that river flooding will not change with climate change, because the 
changes fall completely within the uncertainty range. However, climate changes are 
systematic changes rather than random changes and thus the uncertainty range will be 
shifted to another level (about 5-10 % higher in this case). Obviously, there is a 
considerable amount of uncertainty (or variability in this respect), but the range of this 
uncertainty (and the expected value) will change due to systematic changes in the input 
of the system. This can be illustrated by the following example. Consider an average 
observed precipitation year representing current climate conditions and a wet observed 
precipitation year representing changed climate conditions (a temporal analog). The 
model is able to simulate for both years a correct discharge behaviour and thus the 
model can be supposed to do so for a changed climate as well assuming the predicted 
precipitation change is right. This is a temporal analog for one year of average discharge 
behaviour, similar analogs for flood frequencies can not be given, but are supposed to 
be comparable. Therefore, it can be assumed that the model simulates extreme 
discharges for a changed climate in a reasonable way, although the variability in these 
extreme discharges only increase with climate change. It is thus possible to see effects 
of changes in, for example input, on the model outcomes. 

7.2.4 Generality of results 
The results may be generalised to other geographical areas and research problems. The 
appropriateness procedure can be in principle applied to every arbitrary area in the 
world. The dominance of processes is area dependent, but in general, similar variables 
play an important role in flood generating rainfall-runoff processes. The appropriate 
scales of these variables depend on the region. For example, the appropriate spatial 
scale for precipitation will be much smaller for tropical, mountainous areas with large 
orographical effects than for temperate, relatively flat areas like the Meuse basin. 
Furthermore, the appropriate scales are influenced by the size of the basin. Small 
catchments require smaller time scales than large basins and consequently associated 
spatial scales will differ between small and large basins. The appropriate spatial scales 
were based on a daily time scale in this research for the Meuse basin, whereas the 
determination of appropriate spatial scales for a similar study in a research catchment of 
several km2 should be based on a hourly or even minute time scale leading to smaller 
appropriate spatial scales. Similarly, scale analysis in a climate change study for the 
Amazon may be based on a weekly or monthly time scale probably resulting in larger 
appropriate spatial scales. Appropriate process formulations will change with these 
changes in scale as they are often scale dependent. 

The type of research problem may influence the importance of processes and associated 
variables. For example, when studying the impact of climate change on low flows, 
evapotranspiration and groundwater flow become more important, whereas overland 
flow and subsurface storm flow may be less significant. Consequently, other variables 
are dominant and other appropriate spatial and temporal scales will prevail. Therefore, 
based on the results obtained here only very general guidelines with respect to 
appropriate models for other research objectives can be given. 
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7.2.5 Usefulness of model appropriateness 
The idea of model appropriateness was introduced in chapter 1 in a search for an 
optimum model complexity for a specific research objective and area. At first, an 
appropriate model was defined as a model associated with minimal total costs or a 
minimal total uncertainty. Later on, its definition was rather based on a consistency 
criterion implying that a model should have scales and formulations at a balanced level. 
This criterion has been implemented in a model appropriateness procedure, which was 
mainly applied to assess the appropriate model scale. The processes to be incorporated 
and the process formulations to be used were determined more (semi-)qualitatively.  

The usefulness of the appropriateness procedure is thus in its ability to assess the 
appropriate scales of the individual key variables before model construction and 
integrate them in a balanced way into an appropriate model scale. The procedure will 
not result in a model for a specific situation with a prescribed maximum uncertainty. 
Obviously, the model output uncertainty can be determined afterwards and compared 
with accuracy criteria formulated by model users or policy makers. This output 
uncertainty should consist of several uncertainties at a balanced level. It was found that 
uncertainties due to precipitation and extrapolation errors dominated over other 
uncertainties. However, the precipitation uncertainties are mainly caused by climate 
model errors and uncertainties about future climate. These uncertainties are not 
particularly related to scale and could therefore not been reduced to a balanced level in 
the model appropriateness procedure. The extrapolation uncertainties have to do with 
the length of the data series. These could neither be detected in the procedure, because 
the appropriateness of scales concerns support and spacing scale and not extent scale. 

Another use of the procedure is that is provides a framework for decisions about the 
reduction or expansion of data networks and needs. Application of the framework to the 
dominant variables in a specific situation may reveal where possible data 
inconsistencies (e.g. a too sparse network) exist. Also, discrepancies between 
observations and model results may be explained with the help of the procedure, as has 
been done for example in chapter 4. Obviously, the adequacy of the integration function 
for a specific situation (the curve number method in this case) should be considered 
when applying the appropriateness procedure. 
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Symbols 

a side of square ΛΛΛΛ [L] 
a1 parameter of rainfall correlation function representing nugget 

effect 
 
[1] 

am empirical constant for macropore flow [LT-1] 
at uniform element in diagonal parameter matrix A in AR(1) model [1] 
A surface area [L2] 
Ah energy advected to the water body in Penman-Monteith equation [LT-1] 
b number of subareas in each level of subdivision in random 

cascade model 
 
[1] 

b1 parameter of rainfall correlation function describing correlation 
in x dimension 

 
[L-2] 

b2 parameter of rainfall correlation function describing correlation 
in y dimension 

 
[L-2] 

b3 parameter of rainfall correlation function describing correlation 
in time dimension 

 
[T-2] 

bij elements in parameter matrix B in AR(1) model [1] 
bm empirical constant for macropore flow [1] 
bs parameter determining elements bij in AR(1) model [1] 
BHETA parameter in soil moisture routine of HBV model [1] 
c0 nugget variance contribution  
c1 spatial variance contribution  
c2 temporal variance contribution  
Cm melting factor in HBV model [LT-1θ-1] 
Cr refreezing factor in HBV model [1] 
CN SCS curve number [1] 
CV coefficient of variation [1] 
d number of dimensions in random cascade model [1] 
d1 parameter of random phase model [1] 
d2 parameter of random phase model [L3T-1] 
dT difference between observed and simulated temperature [θ] 
DE vapour pressure deficit in Penman-Monteith equation [F] 
Dr coefficient for wave attenuation in routing routine in HBV model [1] 
e 2.7183…. [1] 
ETa actual evapotranspiration in HBV model [LT-1] 
ETp potential evapotranspiration [LT-1] 
f1 empirical constant for random cascade model parameters [1] 
f2 empirical constant for random cascade model parameters [1] 
f3 empirical constant for random cascade model parameters [1] 
f4 empirical constant for random cascade model parameters [1] 
f5 empirical constant for random cascade model parameters [1] 
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F surface area of model cell [L2] 
F0

2 Froude number [1] 
FC soil water holding capacity in HBV model [L] 
g semi-variance  
g acceleration due to gravity [LT-2] 
G uncertainty criterion  
h lag distance in space [L] 
h water depth [L] 
hf water depth of fast reservoir in HBV model [L] 
hH water depth of fast reservoir at high flow rate in HBV model [L] 
hs water depth of slow reservoir in HBV model [L] 
H hydraulic head [L] 
k lag distance in time [T] 
k recession coefficient [T-1] 
kf recession coefficient of fast reservoir in HBV model [T-1] 
kH recession coefficient at high flow rate in HBV model [T-1] 
ks recession coefficient of slow reservoir in HBV model [T-1] 
K relative lag constant [1] 
KG frequency factor of Gumbel distribution [1] 
KH hydraulic conductivity [LT-1] 
l hydraulic length [L] 
L spatial scale [L] 
Le extent scale  
Lr delay parameter of routing routine in HBV model [T] 
Ls spatial range in spherical variogram model [L] 
Lsp spacing scale  
Lsup support scale  
LP fraction between 0 and 1 in soil moisture routine in HBV model [1] 
M moment  
MAXBAS period over which is filtered in transformation routine in HBV 

model 
 
[T] 

p water distribution function [1] 
pe rainfall excess intensity in SCS method [LT-1] 
pi unconditional probability for state i [1] 
pij conditional probability for state i given state j [1] 
P precipitation  
PC continuous precipitation in random phase model [1] 
PD discrete precipitation in random phase model [1] 
Pe rainfall excess volume in SCS method [L] 
PXY corrected, discrete precipitation in random phase model [L3T-1] 
PE effective precipitation  
PPCC probability plot correlation coefficient [1] 
PPCC* semi probability plot correlation coefficient [1] 
q specific discharge [LT-1] 
qm specific macropore discharge [LT-1] 
qp peak discharge in SCS method [L3T-1] 
Q discharge  
Qavg average observed discharge [LT-1] 
Qd direct discharge over land in HBV model [LT-1] 
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Qf storm flow out of fast reservoir in HBV model [LT-1] 
QH high flow rate out of fast reservoir in HBV model [LT-1] 
Qin indirect discharge through the soil layer in HBV model [LT-1] 
Qm snow melt in HBV model [LT-1] 
Qmax maximum discharge during period Ωd  
Qp design discharge [L3T-1] 
Qp water from precipitation routine in HBV model [LT-1] 
Qperc threshold for percolation in HBV model [LT-1] 
Qr refreezing in HBV model [LT-1] 
Qs subsurface flow out of slow reservoir in HBV model [LT-1] 
Qt total discharge out of fast and slow reservoir in HBV model [LT-1] 
Qtu upstream total discharge in HBV model [LT-1] 
Qtd downstream total discharge in HBV model [LT-1] 
r correlation coefficient [1] 
r* semi-correlation coefficient [1] 
rc runoff coefficient [1] 
R1 Osborn-Hulme reduction function for wet day frequency [1] 
R2 Sivapalan-Blöschl reduction function for return values [1] 
R2 Nash-Sutcliffe efficiency coefficient [1] 
Rn net radiation exchange for the free water surface in Penman-

Monteith equation 
 
[LT-1] 

RE relative error [1] 
REVE relative extreme value error [1] 
RV return value  
RVE relative volume error [1] 
s location in one, two or three dimension(s)  
S number of locations in the space domain ΛΛΛΛd  
S0 slope of river bed or land surface [1] 
Sf slope of energy line [1] 
SL spatial component of spherical variogram model  
Sm sink source term for macropore flow [T-1] 
Ss sink source term for surface flow [LT-1] 
Ssm soil moisture depth in HBV model [L] 
Ssub sink source term for subsurface flow [T-1] 
ST temporal component of spherical variogram model  
SE standard error  
t time [T] 
T number of time steps in the time domain Ωd  
T+ wave period in relation to wave damping time [1] 
Ta air temperature [θ] 
Tb threshold temperature for snowfall in HBV model [θ] 
Tl lag from centroid of rainfall excess to peak discharge in SCS 

method 
 
[T] 

Tp rainfall duration in SCS method [T] 
Tq time of rise to the peak in SCS method [T] 
Ts temporal range in spherical variogram model [T] 
u Osborn-Hulme statistic [1] 
U2 wind speed measured at 2 m in Penman-Monteith equation [LT-1] 
v flow velocity [LT-1] 
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vc characteristic velocity [LT-1] 
V capacity [L3] 
Vp volume of runoff under the hydrograph in SCS method [L] 
W random cascade generator  
x first horizontal dimension [L] 
y second horizontal dimension [L] 
Y model output  
Ym modelled values of Y  
Yo observed values of Y  
z vertical dimension [L] 
   
α measure of non-linearity of fast reservoir in HBV model [1] 
α1 parameter representing spatial nugget effect [1] 
α2 parameter representing temporal nugget effect [1] 
αg shape parameter of gamma distribution [1] 
αgs shape parameter of symmetrical gamma distribution in AR(1) 

model 
 
[1] 

β parameter of beta distribution in random cascade model [1] 
β1 parameter for Osborn-Hulme function R1 [1] 
β2 parameter for Osborn-Hulme function R1 [1] 
βe scale parameter of exponential distribution [1] 
βg scale parameter of gamma distribution [1] 
βgs scale parameter of symmetrical gamma distribution in AR(1) 

model 
 
[1] 

βG scale parameter of Gumbel distribution [1] 
χ Mandelbrot-Kahane-Peyriere (MKP) function  
∆ subarea in random cascade model  
∆E gradient of relation between saturated vapour pressure and 

temperature in Penman-Monteith equation 
 
[Fθ-1] 

∆t temporal resolution [T] 
∆x spatial resolution [L] 
φ soil porosity [1] 
γ semi-variance function  
γ2 kurtosis  
γE psychometric constant dependent on air temperature [Fθ-1] 
η parameter of Gumbel distribution ≈ 0.5772 [1] 
ϕ frequency in x dimension  
κ frequency in y dimension  
κ2 variance reduction function [1] 
λ spatial correlation length [L] 
λE latent heat of vaporisation [EM-1] 
λn scale ratio in random cascade model [1] 
µ average  
π 3.142…. [1] 
θ volumetric soil moisture content [1] 
θf volumetric soil moisture content at field capacity [1] 
θm volumetric macropore water content [1] 
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θw volumetric soil moisture content at wilting point [1] 
ρ correlation function [1] 
σ standard deviation  
σ2 parameter of log-normal distribution in random cascade model [1] 
τ temporal correlation length [T] 
τ slope of log-log relationship between M and λn  
ω frequency in time dimension  
ω0 wave period [T] 
ξgs location parameter of symmetrical gamma distribution in AR(1) 

model 
 
[1] 

ξG location parameter of Gumbel distribution [1] 
υ fitted function to Osborn-Hulme statistic as a function of lag; 

u(h) 
 
[1] 

υ1 parameter for function υ [1] 
υ2 parameter for function υ [L] 
υ  average Osborn-Hulme statistic [1] 
Ω aggregation time period [T] 
Ωd time domain [T] 
ψ pressure head for saturated flow/ tension head for unsaturated 

flow 
 
[L] 

ζ random variable uniformly distributed in interval {0,2π} [1] 
   
A diagonal parameter matrix with uniform elements a in AR(1) 

model  
 

B parameter matrix with elements bij in AR(1) model  
P vector of spatially correlated precipitation  
X vector of model inputs, parameters and/ or processes  
X0 expected values of X  
Xm modelled values of X  
Xo observed values of X  
Z vector of a spatially correlated variable  
   
εεεε vector of uncorrelated random numbers [1] 
ΛΛΛΛ aggregation area  
ΛΛΛΛd 2-dimensional space domain [L2] 
 



 



 

Acronyms and abbreviations 

1XCO2 current ‘equivalent’ carbon dioxide concentration 
2XCO2 twice the current ‘equivalent’ carbon dioxide concentration 
AGCM Atmospheric General Circulation Model 
AMIP Atmospheric Model Intercomparison Project 
AOGCM Atmospheric-Oceanic General Circulation Model 
APIC Antecedent Precipitation Index model (USA) 
AR(1) AutoRegressive lag-1 
ARMA AutoRegressive Moving Average 
ARNO Arno river model (Italy) 
AVHRR Advanced Very High Resolution Radiometer 
BRMC Bureau of Meteorology Research Centre (Australia) 
CCC(ma) Canadian Centre for Climate (modelling and analysis) (Canada) 
CDF Cumulative Distribution Function 
CGCM Canadian Global Coupled Model (Canada) 
CMIP Coupled Model Intercomparison Project 
CO2 carbon dioxide 
CORINE COoRdination of INformation on the Environment system (EU) 
CSIRO Commonwealth Scientific and Industrial Research Organisation 

(Australia) 
DEM Digital Elevation Model 
DTED Digital Terrain Elevation Data 
ECHAM ECMWF HAMburg AGCM (Germany) 
ECMWF European Center for Medium-Range Weather Forecasting 
EDC DAAC EROS Data Center Distributed Active Archive Center (USA) 
EEA European Environmental Agency (EU) 
EROS Earth Resources Observation Systems (USA) 
FAO Food and Agriculture Organisation (UN) 
GCM General Circulation Model or Global Climate Model 
GEV Generalised Extreme Value distribution 
GIS Geographic Information System 
GSFB Generalised Surface inFiltration Baseflow model (Australia) 
GTOPO30 Global 30 arc-second DEM 
HadAM Hadley Centre Atmospheric Model (United Kingdom) 
HadCM Hadley Centre Coupled Model (United Kingdom) 
HadRM Hadley Centre Regional Model (United Kingdom) 
HBV Hydrologiska Byråns Vattenbalansavdelning model (Sweden) 
HEC Hydrologic Engineering Center (USA) 
HIRHAM HIRLAM-ECHAM 
HIRLAM HIgh Resolution Limited Area Model 
HRU Hydrological Response Unit 
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IDF Intensity-Duration-Frequency 
IHACRES Identification of Hydrographs And Components from Rainfall, 

Evaporation and Streamflow data model (Australia) 
IHDM Institute of Hydrology Distributed Model (United Kingdom) 
IPCC Intergovernmental Panel on Climate Change 
IRMB Integrated Runoff Model-F. Bultot (Belgium) 
KMI Royal Meteorological Institute (Belgium) 
LANDSAT LAND SATellite 
LASCAM LArge Scale Catchment Model (Australia) 
MAT1 dominant parent MATerial 
MC Monte Carlo 
METEO F Meteo France (France) 
MKP Mandelbrot-Kahane-Peyriere 
OPYC Ocean isoPYCnal model 
NAPP National Aerial Photography Program (USA) 
NASA-GEOS National Aeronautics and Space Administration-Goddard Earth 

Observation System (USA) 
NATLAN NATure LANd cover package 
NCAR-CCM National Center for Atmospheric Research-Community Climate 

Model (USA) 
NCAR/PSU MM National Center for Atmospheric Research/ Pennsylvania State 

University Mesoscale Model (USA) 
NCEP-NCAR National Centers for Environmental Prediction-National Center for 

Atmospheric Research (USA) 
NOAA National Oceanic and Atmospheric Administration (USA) 
PDF Probability Density Function 
PRMS Precipitation Runoff Modelling System (USA) 
RCM Regional Climate Model 
REA Representative Elementary Area 
RegCM Regional Climate Model (USA) 
REV Representative Elementary Volume 
SA Sensitivity Analysis 
SACRAMENTO Sacramento model (USA) 
SCS Soil Conservation Service (USA) 
SHARE Spatially Horizontally Averaged Richards Equation 
SHE Système Hydrologique Europeèn 
SLURP Simple LUmped Reservoir Parametric model (Canada) 
SMHI Swedish Meteorological and Hydrological Institute (Sweden) 
SPOT Système Probatoire d’Observation de la Terre (France) 
SSARR Streamflow Synthesis And Reservoir Regulation model (USA) 
STANFORD Stanford watershed model (USA) 
SWAP Soil Water Atmosphere Plant model (Netherlands) 
SWMM Storm Water Management Model (USA) 
TEXT1 dominant surface TEXTural Class 
TANK Tank model (Japan) 
TOPMODEL TOPograhic MODEL (United Kingdom) 
US7.5MIN United States 7.5 minute DEM (USA) 
USGS United States Geological Survey (USA) 
XINANJIANG Xinanjiang model (China) 



 

Summary 

Global climate change is likely to increase temperatures, change precipitation patterns 
and probably raise the frequency of extreme events. Impacts of climate change on river 
flooding may be considerable and may cause enormous economical, social and 
environmental damage and even loss of lives. This necessitates the application of robust 
and accurate flood estimation procedures to provide a strong basis for investments in 
flood protection measures with climate change. 

A broad palette of models is available to fulfil this requirement. More complex models 
generally have larger data requirements and computational costs, but may result in 
smaller model output uncertainties and associated costs. It would seem that an optimum 
complexity associated with minimum total costs or uncertainty exists. This raises the 
question what such an appropriate model should look like given the specific modelling 
objective and research area. Or which physical processes and data should be 
incorporated and which mathematical process formulations should be used at which 
spatial and temporal scale, to obtain an appropriate model level? 

Therefore, the main objectives of this study are the determination of the appropriate 
model complexity dependent on modelling objective and research area and the 
assessment of the climate change impact on river flooding with an appropriate model. 
The Meuse basin in Belgium and France serves as an application area in this thesis. The 
first objective is dealt with in chapter 2, 3, 4 and 5 and constitutes the main part of this 
thesis. The second objective is mainly treated in chapter 4 and 6. 

First, in chapter 2 a preliminary model appropriateness procedure has been set up. This 
procedure was found to be inadequate, because of the simplified assumptions done and 
the necessity of selecting a model before the start of the procedure. Therefore, a more 
general model appropriateness framework was introduced comprising the determination 
of the dominant processes and variables, the appropriate scales and the associated 
appropriate process formulations. In this way, the characteristics of an appropriate 
model are determined beforehand and can be implemented in an existing or new model. 
Thus, an internally consistent model is obtained, although it depends on the criteria for 
the appropriateness of scales, the formulations used and the data availability whether the 
complete model is appropriate for the research objective. This can be revealed by 
comparing the output uncertainty of the appropriate model with a specific uncertainty 
criterion. The appropriateness framework is thus mainly based on a consistency 
criterion with an additional uncertainty criterion. 

As part of the appropriateness framework, a methodology was described to assess the 
appropriate scale for a particular variable. This appropriate scale is assumed to be equal 
to a fraction of the correlation length of that variable. The fraction is determined on the 
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basis of relationships between statistics and scale accepting an error of 10 % in the 
estimation of the statistic. This results in fractions of the correlation length between 0.20 
and 0.25 for different statistics such as the standard deviation and the return value. The 
integration of these appropriate variable scales to an appropriate model scale is done by 
multiplying the appropriate variable scales with associated weights. The weights are 
based on SCS curve number method relationships between the peak discharge and some 
specific parameters. The values of these parameters are dependent on the scale of each 
variable and in this way, relations between the peak discharge and the variable scale are 
developed. Finally, the weights are determined and multiplied with the appropriate 
variable scale to obtain the appropriate model scale. 

In chapter 3, the issue of appropriate scales is further explored by considering the effect 
of different spatial and temporal rainfall input and a river basin model scales on extreme 
river discharges. This was done by employing a stochastic rainfall model and a 
dimensionless river basin model with varying scales. The main conclusion was that the 
effect of the model scale (resolution) on extreme river discharge is of major importance 
as compared with the effect of the input scale for the examined river basin and model. 
The highest model resolution (5-10 grid points/ spatial correlation length; 7-10 time 
steps/ temporal correlation length) seems to be appropriate in determining the extreme 
discharge for large river basins with a similar rainfall regime and runoff concentration 
pattern as used here. Furthermore, a relatively low spatial and temporal rainfall 
resolution (1-2 grid points/ spatial correlation length; at most 1 time step/ temporal 
correlation length) was sufficient to represent the rainfall input of a model for these 
large basins. These conclusions will not be significantly affected when using other 
parameter values in the river basin model as shown by the sensitivity analysis. 

In chapter 4, climate data from stations, re-analyses, global climate models (GCMs) 
and regional climate models (RCMs) for Western Europe were analysed and compared. 
The differences between climate models can be considerable, in particular with respect 
to extreme values and correlation lengths. The RCMs and the Australian GCM simulate 
extreme precipitation behaviour under current climate conditions very well, while the 
re-analyses underestimate and the British and Canadian GCMs overestimate extreme 
precipitation. Average precipitation values do not show significant changes with climate 
change (a doubling of carbon dioxide), while standard deviations increase by about 10 
%. Extreme precipitation may increase with climate change by about 15-20 % and 
correlation lengths by about 30-40 %. Model errors and inter-model differences in the 
estimation of extreme precipitation with climate change can amount up to 50 %. This is 
significantly larger than the simulated change. The temperature behaviour under current 
climate conditions is well simulated by the RCMs and the British GCM, but rather 
poorly by the Canadian and Australian GCM. The average predicted temperature 
increase with climate change is 3.7 °C (2.9-4.7 °C). The estimated uncertainty herein is 
about 2-3 °C, which is comparable with the simulated change. The application of the 
reduction methodology from chapter 2 resulted in an appropriate scale for extreme 
precipitation of 20 km with a temporal scale of 1 day. 

Chapter 5 deals with the dominant processes and variables, appropriate scales and 
appropriate process formulations in the river basin. Dominant processes in the context 
of river flooding have been derived from literature and were infiltration and saturation 
excess overland flow, subsurface storm flow and subsurface flow in the soil matrix. The 
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associated key variables are elevation, soil type and land use type. The application of 
the reduction methodology resulted in appropriate scales for these key variables of 
respectively 0.1, 5.3 and 3.3 km. The appropriate model scale was about 10 km with a 
temporal scale of 1 day. Appropriate formulations related to these appropriate scales 
have been derived from literature and some rough semi-qualitative estimations. The 
formulations of importance were those related to evapotranspiration, surface flow and 
subsurface (storm) flow. Relatively simple formulations were found to be sufficient for 
this model objective and appropriate spatial scale. 

In chapter 6, the impact of climate change on river flooding has been evaluated by 
using the climate change information and river basin models of different complexities. 
Precipitation with climate change was generated with a space-time random cascade 
rainfall model in an acceptable way. An appropriate river basin model has been 
constructed by implementing the appropriate model components derived before into an 
existing modelling framework (HBV). Additionally, two river basin models of differing 
complexities have been set up to evaluate the sensitivity of the model results to model 
complexity and to allow for a verification of the model appropriateness procedure. The 
appropriate model has 118 sub-basins (HBV-118) and an associated model scale of 
about 13 km. This model scale is of the same order of magnitude as the one revealed in 
the scale analysis (10 km) and assumed to be sufficient for checking the appropriateness 
requirements. The additional models have 1 and 15 sub-basin(s) (HBV-1 and HBV-15). 
The three models were calibrated and validated with identical data series as far as 
possible. Generations of the rainfall model under current and changed climate 
conditions have been used to assess the climate change impacts. 

The average and extreme discharge behaviour at the basin outlet (Borgharen) is well 
reproduced by the three models in the calibration and validation, the results become 
somewhat better with increasing model complexity. The small differences between 
HBV-15 and HBV-118 are not surprising given the small differences in spatial model 
scales and the fact that no additional discharge series have been used in the calibration 
and validation of HBV-118. The model results with synthetic precipitation under current 
climate conditions show a considerable underestimation of extreme discharge 
behaviour. The underestimation of extreme discharges is caused by the observed 
precipitation input at the sub-basin scale. In most cases, this precipitation is not an 
areally averaged quantity, but rather a point quantity resulting in an overestimation of 
observed precipitation variability and extreme behaviour at the sub-basin scale 
compared to the generated precipitation. This seems to be a very frequently occurring 
problem, which can be improved by increasing the density of precipitation stations in a 
river basin in an efficient manner or employing more sophisticated interpolation 
methods. 

The general trend with climate change is a small decrease (~5 %) of the average 
discharge and a small increase (~5-10 %) of discharge variability and extreme 
discharges. The variability in extreme discharges increased under climate change 
conditions. This variability results both from the stochasticity of the precipitation 
process and the differences between the climate models. Overall, it was found that the 
uncertainties in extreme discharges due to precipitation errors and extrapolation errors 
(both about 20 %) are more important than uncertainties due to hydrological model 
errors and parameter estimation errors (both less than 10 %). 
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Finally, in chapter 7 the main conclusions are summarised and some specific issues are 
discussed. The two main objectives are achieved. First, a methodology to assess an 
appropriate model dependent on research objective and area has been developed. Its 
application to the issue of climate change impacts on flooding in the Meuse basin 
revealed dominant processes and variables, appropriate variable scales, an appropriate 
model scale of 10 km and appropriate process formulations. These appropriate model 
components have been used to construct the appropriate model. 

Second, the impact of climate change on flooding in the river Meuse has been assessed 
with the appropriate model. The change in river flooding (5-10 %) was found to be 
much smaller than its associated uncertainty (more than 40 %). However, it has been 
argued that the changes have a systematic rather than a stochastic character and 
therefore are not completely cancelled out by the uncertainties. 
 



 

Samenvatting 

Door wereldwijde klimaatveranderingen zullen temperaturen waarschijnlijk gaan 
stijgen, neerslagpatronen veranderen en de frequenties van extreme gebeurtenissen 
toenemen. De effecten van deze klimaatveranderingen op hoogwater in rivieren kunnen 
aanzienlijk zijn en enorme economische, sociale en ecologische schade veroorzaken en 
zelfs doden tot gevolg hebben. Dit maakt het noodzakelijk om robuuste en nauwkeurige 
hoogwater voorspellingsmethoden te gebruiken, die als een stevige basis kunnen dienen 
voor investeringen in hoogwater beschermingsmaatregelen bij klimaatveranderingen. 

Een breed scala aan modellen is beschikbaar om aan deze eisen te voldoen. Complexere 
modellen hebben in het algemeen meer data en rekentijd nodig, maar kunnen resulteren 
in kleinere modelonzekerheden en bijbehorende kosten. Het lijkt erop dat er een 
optimale modelcomplexiteit bestaat, die gepaard gaat met minimale totale kosten of 
onzekerheden. Dit roept de vraag op hoe zo’n geschikt model er uit moet zien gegeven 
een specifiek onderzoeksdoel en –gebied. Of welke fysische processen en data moet een 
model bevatten en welke mathematische procesformuleringen moeten worden gebruikt 
op welke ruimtelijke en temporele schaal, om een geschikt model te verkrijgen? 

De belangrijkste doelstellingen in dit onderzoek zijn daarom de bepaling van een 
geschikte modelcomplexiteit afhankelijk van het onderzoeksdoel en –gebied en de 
schatting van het effect van klimaatveranderingen op hoogwater met een geschikt 
model. Het Maasstroomgebied in België en Frankrijk dient als een toepassingsgebied in 
dit proefschrift. De eerste doelstelling wordt behandeld in hoofdstuk 2, 3, 4 en 5 en 
vormt het grootste deel van dit proefschrift. De tweede doelstelling wordt voornamelijk 
in hoofdstuk 4 en 6 behandeld. 

Ten eerste is in hoofdstuk 2 een voorlopige procedure voor modelgeschiktheid opgezet. 
Deze procedure bleek niet aan de eisen te voldoen vanwege de vereenvoudigde 
aannames en de noodzaak tot het hebben van een model bij aanvang van de procedure. 
Daarom werd een meer algemeen raamwerk voor modelgeschiktheid geïntroduceerd, 
dat bestaat uit de bepaling van de dominante processen en variabelen, de geschikte 
schalen en de bijbehorende geschikte procesformuleringen. Op deze manier worden de 
karakteristieken van een geschikt model vooraf bepaald en kunnen worden 
geïmplementeerd in een bestaand of nieuw model. Zo wordt een intern consistent model 
verkregen, ofschoon het van de criteria voor de geschiktheid van schalen, de gebruikte 
formuleringen en de databeschikbaarheid afhangt of het gehele model geschikt is voor 
het onderzoeksdoel. Dit laatste kan worden uitgevonden door de totale onzekerheid van 
het geschikte model te vergelijken met een specifiek criterium. Het raamwerk voor 
modelgeschiktheid is dus hoofdzakelijk gebaseerd op een consistentiecriterium met een 
additioneel onzekerheidscriterium. 
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Als onderdeel van het raamwerk werd vervolgens een methode beschreven om de 
geschikte schaal voor een bepaalde variabele te bepalen. Aangenomen wordt dat deze 
geschikte schaal gelijk is aan een fractie van de correlatielengte van die variabele. De 
fractie wordt bepaald op basis van relaties tussen statistieken en schalen en acceptatie 
van een fout van 10 % in de schatting van de statistiek. Dit resulteert in fracties van de 
correlatieslengte tussen 0.20 en 0.25 voor verschillende statistieken zoals de 
standaarddeviatie en de herhalingswaarde. De integratie van deze geschikte schalen 
voor variabelen naar een geschikte modelschaal is tot stand gebracht door de geschikte 
schalen voor variabelen te vermenigvuldigen met de bijbehorende gewichten. Deze 
gewichten zijn gebaseerd op SCS curve-nummer relaties tussen de piekafvoer en enkele 
specifieke parameters. De waarden van deze parameters zijn afhankelijk van de schaal 
van elke variabele en op deze manier ontstaan relaties tussen de piekafvoer en de schaal 
voor een variabele. Uiteindelijk worden de gewichten bepaald en vermenigvuldigd met 
de geschikte schaal voor een variabele om zo de geschikte modelschaal te verkrijgen. 

In hoofstuk 3 wordt het probleem van geschikte schalen verder verkend door het effect 
van verschillende ruimtelijke en temporele schalen voor de neerslaginvoer en het 
stroomgebiedmodel op extreme afvoeren te bekijken. Hiervoor zijn een stochastisch 
neerslagmodel en een dimensieloos stroomgebiedmodel met variabele schalen gebruikt. 
De belangrijkste conclusie was dat het effect van de modelschaal (resolutie) op extreme 
rivierafvoeren veel belangrijker is dan het effect van de invoerschaal voor het 
beschouwde stroomgebied en model. De hoogste modelresolutie (5-10 roosterpunten/ 
ruimtelijke correlatielengte; 7-10 tijdstappen/ temporele correlatielengte) lijkt geschikt 
te zijn voor de bepaling van extreme afvoeren van grote stroomgebieden met een 
soortgelijk neerslagregime en afvoerconcentratie patroon. Verder was a relatief lage 
ruimtelijke en temporele neerslagresolutie (1-2 roosterpunten/ ruimtelijke 
correlatielengte; hoogstens 1 tijdstap/ temporele correlatielengte) voldoende om de 
neerslaginvoer van een model voor deze grote stroomgebieden te representeren. Deze 
conclusies zullen niet significant anders zijn wanneer andere parameterwaarden in het 
stroomgebiedmodel worden gebruikt, zoals aangetoond is door de gevoeligheidsanalyse. 

In hoofdstuk 4 werden klimaatdata afkomstig van stations, assimilaties, globale 
klimaatmodellen (GCMs) en regionale klimaatmodellen (RCMs) voor West Europa 
geanalyseerd en vergeleken. De verschillen tussen de klimaatmodellen kunnen 
aanzienlijk zijn, in het bijzonder met betrekking tot extreme waarden en 
correlatielengten. De RCMs en de Australische GCM simuleren extreem neerslaggedrag 
voor het huidige klimaat erg goed, terwijl de assimilaties extreme neerslag 
onderschatten en de Britse en Canadese GCMs extreme neerslag overschatten. 
Gemiddelde neerslagwaarden veranderen niet significant bij klimaatveranderingen (een 
verdubbeling van koolstofdioxide), terwijl de standaarddeviaties stijgen met ongeveer 
10 %. Extreme neerslag kan als gevolg van klimaatveranderingen stijgen met 15-20 % 
en correlatielengten met 30-40 %. Modelfouten en verschillen tussen modellen 
onderling bij de schatting van extreme neerslag bij klimaatveranderingen kunnen 
oplopen tot 50 %. Dit is significant hoger dan de gesimuleerde verandering. Het 
temperatuurgedrag onder de huidige klimaatcondities wordt goed gesimuleerd door de 
RCMs en de Britse GCM, maar tamelijk slecht door de Canadese en Australische 
GCMs. De gemiddelde voorspelde temperatuurverandering bij klimaatveranderingen is 
3.7 ºC (2.9-4.7 ºC). De geschatte onzekerheid hierin is 2-3 ºC, wat vergelijkbaar is met 
de gesimuleerde verandering. De toepassing van de reductiemethodologie van 
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hoofdstuk 2 resulteerde in een geschikte schaal voor extreme neerslag van 20 km bij een 
temporele schaal van 1 dag. 

In hoofdstuk 5 worden de dominante processen en variabelen, geschikte schalen en 
geschikte procesformuleringen in het stroomgebied beschouwd. Dominante processen 
in de context van hoogwater in rivieren zijn afgeleid uit de literatuur en waren 
oppervlakkige afstroming als gevolg van een infiltratie- of verzadigingsoverschot, 
ondergrondse ‘storm’-afstroming en ondergrondse afstroming in de bodemmatrix. De 
bijbehorende ‘sleutelvariabelen’ zijn hoogte, bodemtype en landgebruiktype. De 
toepassing van de reductiemethodologie resulteerde in geschikte schalen voor deze 
sleutelvariabelen van respectievelijk 0.1, 5.3 en 3.3 km. De geschikte modelschaal was 
ongeveer 10 km bij een temporele schaal van 1 dag. Geschikte formuleringen 
gerelateerd aan deze geschikte schalen zijn verkregen uit de literatuur en enkele globale 
semi-kwalitatieve schattingen. De formuleringen van belang waren die gerelateerd aan 
evapotranspiratie, oppervlakkige afstroming en ondergrondse (storm) afstroming. 
Relatief simpele formuleringen bleken voldoende te zijn voor het onderhavige 
onderzoeksdoel en de geschikte ruimtelijke schaal. 

In hoofdstuk 6 is het effect van klimaatveranderingen op hoogwater geëvalueerd door 
de klimaatinformatie en stroomgebiedmodellen van verschillende complexiteiten te 
gebruiken. De neerslag bij klimaatveranderingen is op een acceptabele manier 
gegenereerd met een ruimte-tijd ‘random cascade’ neerslagmodel. Vervolgens is een 
geschikt stroomgebiedmodel geconstrueerd door de geschikte modelcomponenten van 
voorgaande hoofdstukken te implementeren in een bestaand modelraamwerk (HBV). 
Bovendien zijn twee extra stroomgebiedmodellen met afwijkende complexiteiten 
opgezet, om de gevoeligheid van de modelresultaten voor modelcomplexiteit te 
evalueren en om in staat te zijn om de procedure voor modelgeschiktheid te verifiëren. 
Het geschikte model heeft 118 deelstroomgebieden (HBV-118) en een bijbehorende 
modelschaal van ongeveer 13 km. Deze modelschaal is van dezelfde orde van grootte 
als die uit de schaalanalyse (10 km) en wordt geacht voldoende te zijn om de eisen voor 
geschiktheid te checken. De additionele modellen hebben 1 en 15 deelstroomgebied(en) 
(HBV-1 en HBV-15). De drie modellen werden gekalibreerd en gevalideerd met 
identieke datareeksen voor zover mogelijk. Generaties van het neerslagmodel onder 
huidige en toekomstige klimaatomstandigheden zijn gebruikt om de klimaateffecten te 
bepalen. 

Het gemiddelde en extreme afvoergedrag bij het uitstroompunt (Borgharen) wordt goed 
gereproduceerd door de drie modellen in de kalibratie en validatie. De resultaten 
worden iets beter bij een toename van de modelcomplexiteit. De kleine verschillen 
tussen HBV-15 en HBV-118 zijn niet verassend gezien de kleine verschillen in de 
ruimtelijke modelschalen en het feit dat er geen extra afvoerreeksen zijn gebruikt in de 
kalibratie en validatie van HBV-118. De modelresultaten met synthetische neerslag 
onder huidige klimaatomstandigheden laten een aanzienlijke onderschatting van 
extreme afvoeren zien. De onderschatting van extreme afvoeren wordt veroorzaakt door 
de waargenomen neerslag op de schaal van de deelstroomgebieden. In de meeste 
gevallen is deze neerslag niet een gebiedsgemiddelde grootheid, maar meer een 
puntgrootheid wat resulteert in een overschatting van de waargenomen 
neerslagvariabiliteit en extreem neerslaggedrag op de schaal van de deelstroomgebieden 
vergeleken met de gegenereerde neerslag. Dit lijkt een veel voorkomend probleem te 
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zijn, dat kan worden verbeterd door de dichtheid van neerslagstations te vergroten op 
een efficiënte manier of door meer verfijnde interpolatiemethoden te gebruiken. 

De algemene tendens bij klimaatveranderingen is een kleine afname (~5 %) van de 
gemiddelde afvoer en een kleine toename (~5-10 %) van de afvoervariabiliteit en 
extreme afvoeren. De variabiliteit in extreme afvoeren neemt toe bij 
klimaatveranderingen. Deze variabiliteit is afkomstig van de stochasticiteit van het 
neerslagproces en de verschillen tussen de klimaatmodellen. Globaal werd vastgesteld 
dat de onzekerheden in extreme afvoeren als gevolg van fouten in de neerslag en de 
extrapolatie (beide ongeveer 20 %) belangrijker zijn dan de onzekerheden als gevolg 
van hydrologische modelfouten en fouten in de parameterschattingen (beide minder dan 
10 %). 

Tenslotte worden in hoofdstuk 7 de belangrijkste conclusies samengevat en worden 
enkele specifieke kwesties bediscussieerd. De twee belangrijkste doelstellingen zijn 
bereikt. Ten eerste is er een methodologie ontwikkeld om een geschikt model 
afhankelijk van het onderzoeksdoel en –gebied te bepalen. De toepassing van de 
methodologie op het probleem van klimaatseffecten op hoogwater in het 
Maasstroomgebied resulteerde in dominante processen en variabelen, geschikte schalen 
voor variabelen, een geschikte modelschaal van 10 km en geschikte 
procesformuleringen. Deze geschikte modelcomponenten zijn gebruikt om een geschikt 
model te construeren. 

Ten tweede is het effect van klimaatveranderingen op hoogwater in de Maas bepaald 
met het geschikte model. De verandering in hoogwater (5-10 %) was veel kleiner dan de 
bijbehorende onzekerheid (meer dan 40 %). Echter, er is betoogd dat de veranderingen 
een meer systematisch dan stochastisch karakter hebben en daarom worden ze niet 
volledig tenietgedaan door de onzekerheden. 
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